First, balance the chemical equation for the combustion of acetylene:
\[
\mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})} + \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} + \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
\]
Balanced equation:
\[
2 \mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})} + 5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{CO}_{2(\mathrm{~g})} + 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
\]
Calculate the molar masses of the relevant compounds:
- Molar mass of \(\mathrm{C}_{2} \mathrm{H}_{2}\): \(2 \times 12.01 + 2 \times 1.01 = 26.04 \, \text{g/mol}\)
- Molar mass of \(\mathrm{H}_{2} \mathrm{O}\): \(2 \times 1.01 + 16.00 = 18.02 \, \text{g/mol}\)
Convert 113 g of acetylene to moles:
\[
\text{Moles of } \mathrm{C}_{2} \mathrm{H}_{2} = \frac{113 \, \text{g}}{26.04 \, \text{g/mol}} \approx 4.34 \, \text{mol}
\]
Use the balanced equation to find the moles of water produced:
\[
2 \, \text{mol} \, \mathrm{C}_{2} \mathrm{H}_{2} \rightarrow 2 \, \text{mol} \, \mathrm{H}_{2} \mathrm{O}
\]
\[
4.34 \, \text{mol} \, \mathrm{C}_{2} \mathrm{H}_{2} \rightarrow 4.34 \, \text{mol} \, \mathrm{H}_{2} \mathrm{O}
\]
Convert moles of water to grams:
\[
\text{Grams of } \mathrm{H}_{2} \mathrm{O} = 4.34 \, \text{mol} \times 18.02 \, \text{g/mol} \approx 78.20 \, \text{g}
\]
Convert 1.10 mol of \(\mathrm{CO}_{2}\) to moles of acetylene using the balanced equation:
\[
4 \, \text{mol} \, \mathrm{CO}_{2} \rightarrow 2 \, \text{mol} \, \mathrm{C}_{2} \mathrm{H}_{2}
\]
\[
1.10 \, \text{mol} \, \mathrm{CO}_{2} \rightarrow \frac{1.10 \, \text{mol} \times 2}{4} = 0.55 \, \text{mol} \, \mathrm{C}_{2} \mathrm{H}_{2}
\]
Convert moles of acetylene to grams:
\[
\text{Grams of } \mathrm{C}_{2} \mathrm{H}_{2} = 0.55 \, \text{mol} \times 26.04 \, \text{g/mol} \approx 14.32 \, \text{g}
\]
(a) \( \boxed{78.20 \, \text{g}} \)
(b) \( \boxed{14.32 \, \text{g}} \)