(a) Find \(\operatorname{div} \mathbf{F}\).
Calculate the divergence of \(\mathbf{F}\).
The divergence of a vector field \(\mathbf{F} = \langle P, Q, R \rangle\) is given by \(\operatorname{div} \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\).
For \(\mathbf{F} = \langle 3x^2 - 4y^2, -2xyz, 4z^2 \rangle\):
\[
\frac{\partial P}{\partial x} = \frac{\partial}{\partial x}(3x^2 - 4y^2) = 6x
\]
\[
\frac{\partial Q}{\partial y} = \frac{\partial}{\partial y}(-2xyz) = -2xz
\]
\[
\frac{\partial R}{\partial z} = \frac{\partial}{\partial z}(4z^2) = 8z
\]
Thus, \(\operatorname{div} \mathbf{F} = 6x - 2xz + 8z\).
\(\boxed{\operatorname{div} \mathbf{F} = 6x - 2xz + 8z}\)
(b) Use the Divergence Theorem to evaluate \(\iint_{S} \mathbf{F} \cdot d \mathbf{S}\).
Sketch the region \(S\).
The region \(S\) is the surface of the paraboloid \(z = R^2 - x^2 - y^2\) with \(y \geq 0\) and \(z \geq 0\). This is a paraboloid opening downward, truncated by the plane \(z = 0\) and the plane \(y = 0\). The region is symmetric about the \(x\)-axis and lies in the first and fourth quadrants of the \(xy\)-plane.
Set up the integral using the Divergence Theorem.
The Divergence Theorem states:
\[
\iint_{S} \mathbf{F} \cdot d \mathbf{S} = \iiint_{V} \operatorname{div} \mathbf{F} \, dV
\]
where \(V\) is the volume enclosed by \(S\).
The volume \(V\) is bounded by \(z = R^2 - x^2 - y^2\), \(y \geq 0\), and \(z \geq 0\).
In cylindrical coordinates, \(x = r\cos\theta\), \(y = r\sin\theta\), and \(z = z\), the limits are:
- \(0 \leq r \leq R\)
- \(0 \leq \theta \leq \pi\)
- \(0 \leq z \leq R^2 - r^2\)
The divergence \(\operatorname{div} \mathbf{F} = 6x - 2xz + 8z\) in cylindrical coordinates becomes:
\[
6r\cos\theta - 2r\cos\theta z + 8z
\]
The integral is:
\[
\iiint_{V} (6r\cos\theta - 2r\cos\theta z + 8z) \, r \, dz \, dr \, d\theta
\]
Simplifying the integrand:
\[
= \iiint_{V} (6r^2\cos\theta - 2r^2\cos\theta z + 8rz) \, dz \, dr \, d\theta
\]
This is the integral to be evaluated.
\(\boxed{\iiint_{V} (6r^2\cos\theta - 2r^2\cos\theta z + 8rz) \, dz \, dr \, d\theta}\)
\(\boxed{\operatorname{div} \mathbf{F} = 6x - 2xz + 8z}\)
\(\boxed{\iiint_{V} (6r^2\cos\theta - 2r^2\cos\theta z + 8rz) \, dz \, dr \, d\theta}\)