Questions: Elemental sulfur exists in two crystalline forms, rhombic and monoclinic. From the following data, calculate the equilibrium temperature at which monoclinic sulfur and rhombic sulfur are in equilibrium. - Delta Hf°(kJ / mol) and S°(J / K mol): S (rhombic): 0, 31.880 S (monoclinic): 0.30, 32.546 450 K 200 K -200 K -450 K 0 K

Elemental sulfur exists in two crystalline forms, rhombic and monoclinic. From the following data, calculate the equilibrium temperature at which monoclinic sulfur and rhombic sulfur are in equilibrium.

- Delta Hf°(kJ / mol) and S°(J / K mol):
  
  S (rhombic): 0, 31.880
  
  S (monoclinic): 0.30, 32.546

450 K
200 K
-200 K
-450 K
0 K
Transcript text: Elemental sulfur exists in two crystalline forms, rhombic and monoclinic. From the following data, calculate the equilibrium temperature at which monoclinic sulfur and rhombic sulfur are in equilibrium. \begin{tabular}{lcc} & $\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ & $S^{\circ}(\mathrm{J} / \mathrm{K} \mathrm{mol})$ \\ S (rhombic) & 0 & 31.880 \\ S (monoclinic) & 0.30 & 32.546 \end{tabular} 450 K 200 K -200 K $-450 \mathrm{~K}$ 0 K
failed

Solution

failed
failed

Solution Steps

Step 1: Understanding the Problem

We need to find the equilibrium temperature at which monoclinic sulfur and rhombic sulfur are in equilibrium. This involves using the given enthalpy and entropy values for both forms of sulfur.

Step 2: Gibbs Free Energy Change

The equilibrium temperature can be found using the Gibbs free energy change equation: \[ \Delta G = \Delta H - T \Delta S \] At equilibrium, \(\Delta G = 0\), so: \[ 0 = \Delta H - T \Delta S \] Solving for \(T\): \[ T = \frac{\Delta H}{\Delta S} \]

Step 3: Calculate \(\Delta H\) and \(\Delta S\)

Given: \[ \Delta H_{\text{f}}^{\circ}(\text{monoclinic}) = 0.30 \, \text{kJ/mol} \] \[ \Delta H_{\text{f}}^{\circ}(\text{rhombic}) = 0 \, \text{kJ/mol} \] \[ S^{\circ}(\text{monoclinic}) = 32.546 \, \text{J/K mol} \] \[ S^{\circ}(\text{rhombic}) = 31.880 \, \text{J/K mol} \]

Calculate the changes: \[ \Delta H = \Delta H_{\text{f}}^{\circ}(\text{monoclinic}) - \Delta H_{\text{f}}^{\circ}(\text{rhombic}) = 0.30 \, \text{kJ/mol} - 0 \, \text{kJ/mol} = 0.30 \, \text{kJ/mol} \] \[ \Delta S = S^{\circ}(\text{monoclinic}) - S^{\circ}(\text{rhombic}) = 32.546 \, \text{J/K mol} - 31.880 \, \text{J/K mol} = 0.666 \, \text{J/K mol} \]

Step 4: Convert \(\Delta H\) to J/mol

\[ \Delta H = 0.30 \, \text{kJ/mol} \times 1000 \, \text{J/kJ} = 300 \, \text{J/mol} \]

Step 5: Calculate the Equilibrium Temperature

\[ T = \frac{\Delta H}{\Delta S} = \frac{300 \, \text{J/mol}}{0.666 \, \text{J/K mol}} = 450.4505 \, \text{K} \]

Final Answer

\[ \boxed{450 \, \text{K}} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful