Questions: Part A
A mixture initially contains A, B, and C in the following concentrations: [A]=0.650 M, [B]=0.600 M, and [C]= 0.300 M. The following reaction occurs and equilibrium is established:
A + 2 B ↔ C
At equilibrium, [A]=0.490 M and [C]=0.460 M. Calculate the value of the equilibrium constant, Kc.
Express your answer numerically.
Transcript text: Part A
A mixture initially contains $\mathrm{A}, \mathrm{B}$, and C in the foll concentrations: $[\mathrm{A}]=0.650 \mathrm{M},[\mathrm{B}]=0.600 \mathrm{M}$, and $[\mathrm{C}]=$ 0.300 M . The following reaction occurs and equilibrium is established:
\[
\mathrm{A}+2 \mathrm{~B} \rightleftharpoons \mathrm{C}
\]
At equilibrium, $[\mathrm{A}]=0.490 \mathrm{M}$ and $[\mathrm{C}]=0.460 \mathrm{M}$. Calculate the value of the equilibrium constant, $K_{\mathrm{c}}$.
Express your answer numerically.
View Available Hint(s)
\[
K_{\mathrm{c}}=
\]
Submit
Part B Complete previous part(s)
Settings
Provide Feedback
Next >
Solution
Solution Steps
Step 1: Write the balanced chemical equation and initial concentrations
The balanced chemical equation is:
\[
\mathrm{A} + 2\mathrm{B} \rightleftharpoons \mathrm{C}
\]
The initial concentrations are:
\[
[\mathrm{A}]_0 = 0.650 \, \mathrm{M}, \quad [\mathrm{B}]_0 = 0.600 \, \mathrm{M}, \quad [\mathrm{C}]_0 = 0.300 \, \mathrm{M}
\]
Step 2: Determine the change in concentration
At equilibrium, the concentration of \(\mathrm{A}\) is given as \(0.490 \, \mathrm{M}\). The change in concentration of \(\mathrm{A}\) is:
\[
\Delta [\mathrm{A}] = [\mathrm{A}]_0 - [\mathrm{A}]_{\text{eq}} = 0.650 \, \mathrm{M} - 0.490 \, \mathrm{M} = 0.160 \, \mathrm{M}
\]
Since the stoichiometry of the reaction shows that 1 mole of \(\mathrm{A}\) reacts with 2 moles of \(\mathrm{B}\) to form 1 mole of \(\mathrm{C}\), the changes in concentrations are:
\[
\Delta [\mathrm{B}] = 2 \times \Delta [\mathrm{A}] = 2 \times 0.160 \, \mathrm{M} = 0.320 \, \mathrm{M}
\]
\[
\Delta [\mathrm{C}] = \Delta [\mathrm{A}] = 0.160 \, \mathrm{M}
\]
Step 3: Calculate equilibrium concentrations
Using the changes in concentration, we can find the equilibrium concentrations of \(\mathrm{B}\) and \(\mathrm{C}\):
\[
[\mathrm{B}]_{\text{eq}} = [\mathrm{B}]_0 - \Delta [\mathrm{B}] = 0.600 \, \mathrm{M} - 0.320 \, \mathrm{M} = 0.280 \, \mathrm{M}
\]
\[
[\mathrm{C}]_{\text{eq}} = [\mathrm{C}]_0 + \Delta [\mathrm{C}] = 0.300 \, \mathrm{M} + 0.160 \, \mathrm{M} = 0.460 \, \mathrm{M}
\]
Step 4: Write the expression for the equilibrium constant \(K_{\mathrm{c}}\)
The equilibrium constant expression for the reaction is:
\[
K_{\mathrm{c}} = \frac{[\mathrm{C}]_{\text{eq}}}{[\mathrm{A}]_{\text{eq}} [\mathrm{B}]_{\text{eq}}^2}
\]
Step 5: Substitute the equilibrium concentrations into the expression
Substitute the equilibrium concentrations into the expression for \(K_{\mathrm{c}}\):
\[
K_{\mathrm{c}} = \frac{0.460 \, \mathrm{M}}{(0.490 \, \mathrm{M})(0.280 \, \mathrm{M})^2}
\]