To find the expected profit, we use the formula for the mean of a discrete probability distribution:
\[
\text{Mean} = \sum (x_i \cdot p_i)
\]
where \(x_i\) are the possible outcomes and \(p_i\) are the corresponding probabilities. Substituting the values:
\[
\text{Mean} = 5000 \times 0.15 + 3000 \times 0.35 + 0 \times 0.2 + (-2000) \times 0.3
\]
Calculating each term:
\[
= 750 + 1050 + 0 - 600 = 1200.0
\]
Thus, the expected profit is:
\[
\text{Expected Profit} = 1200.0
\]
The variance is calculated using the formula:
\[
\text{Variance} = \sigma^2 = \sum ((x_i - \text{Mean})^2 \cdot p_i)
\]
Substituting the values:
\[
\text{Variance} = (5000 - 1200.0)^2 \times 0.15 + (3000 - 1200.0)^2 \times 0.35 + (0 - 1200.0)^2 \times 0.2 + (-2000 - 1200.0)^2 \times 0.3
\]
Calculating each term:
\[
= (3800)^2 \times 0.15 + (1800)^2 \times 0.35 + (1200)^2 \times 0.2 + (-3200)^2 \times 0.3
\]
\[
= 14440000 \times 0.15 + 3240000 \times 0.35 + 1440000 \times 0.2 + 10240000 \times 0.3
\]
\[
= 2166000 + 1134000 + 288000 + 3072000 = 6660000.0
\]
Thus, the variance is:
\[
\text{Variance} = 6660000.0
\]
The standard deviation is the square root of the variance:
\[
\text{Standard Deviation} = \sigma = \sqrt{6660000.0} \approx 2580.698
\]
The expected profit is:
\[
\boxed{1200.0}
\]