To find the concentration of hydronium ions \([\text{H}^+]\) in the buffer solution, we use the pH formula:
\[
\text{pH} = -\log[\text{H}^+]
\]
Given that \(\text{pH} = 2.51\), we can solve for \([\text{H}^+]\):
\[
[\text{H}^+] = 10^{-\text{pH}} = 10^{-2.51} \approx 3.089 \times 10^{-3} \, \text{M}
\]
The Henderson-Hasselbalch equation for a buffer solution is:
\[
\text{pH} = \text{pK}_a + \log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right)
\]
Where:
- \([\text{A}^-]\) is the concentration of the conjugate base \(\text{ClO}_2^-\).
- \([\text{HA}]\) is the concentration of the weak acid \(\text{HClO}_2\).
- \(\text{pK}_a = -\log K_a\).
Calculate \(\text{pK}_a\):
\[
\text{pK}_a = -\log(1.1 \times 10^{-2}) \approx 1.959
\]
Substitute the known values into the Henderson-Hasselbalch equation:
\[
2.51 = 1.959 + \log\left(\frac{[\text{ClO}_2^-]}{1.20}\right)
\]
Rearrange the equation to solve for \([\text{ClO}_2^-]\):
\[
2.51 - 1.959 = \log\left(\frac{[\text{ClO}_2^-]}{1.20}\right)
\]
\[
0.551 = \log\left(\frac{[\text{ClO}_2^-]}{1.20}\right)
\]
Convert from logarithmic form to exponential form:
\[
10^{0.551} = \frac{[\text{ClO}_2^-]}{1.20}
\]
\[
[\text{ClO}_2^-] = 1.20 \times 10^{0.551} \approx 3.794 \, \text{M}
\]
The concentration of \(\text{ClO}_2^-\) is the same as the concentration of \(\text{KClO}_2\) because they dissociate completely. Calculate the moles of \(\text{KClO}_2\) needed:
\[
\text{Moles of } \text{KClO}_2 = 3.794 \, \text{M} \times 0.450 \, \text{L} = 1.7073 \, \text{mol}
\]
Calculate the mass of \(\text{KClO}_2\) using its molar mass (\(M_{\text{KClO}_2} = 106.55 \, \text{g/mol}\)):
\[
\text{Mass of } \text{KClO}_2 = 1.7073 \, \text{mol} \times 106.55 \, \text{g/mol} \approx 182.0 \, \text{g}
\]
The mass of \(\text{KClO}_2\) required is \(\boxed{180 \, \text{g}}\).