Questions: In the laboratory, a general chemistry student measured the pH of a 0.334 M aqueous solution of aniline, C6H5NH2 to be 9.034.
Use the information she obtained to determine the Kb for this base.
Kb(experiment) =
Transcript text: In the laboratory, a general chemistry student measured the pH of a $\mathbf{0 . 3 3 4} \mathrm{M}$ aqueous solution of aniline, $\mathrm{C}_{6} \mathrm{H}_{\mathbf{5}} \mathrm{NH}_{2}$ to be $\mathbf{9 . 0 3 4}$.
Use the information she obtained to determine the $\mathrm{K}_{\mathrm{b}}$ for this base.
$\mathrm{K}_{\mathrm{b}}($ experiment $)=$ $\square$
Solution
Solution Steps
Step 1: Determine the concentration of OH\(^-\) ions
The pH of the solution is given as 9.034. First, we need to find the pOH using the relationship:
\[
\text{pOH} = 14 - \text{pH}
\]
\[
\text{pOH} = 14 - 9.034 = 4.966
\]
Next, we calculate the concentration of OH\(^-\) ions using the pOH:
\[
[\text{OH}^-] = 10^{-\text{pOH}}
\]
\[
[\text{OH}^-] = 10^{-4.966} \approx 1.080 \times 10^{-5} \, \text{M}
\]
Step 2: Set up the equilibrium expression for aniline
Aniline (\(\mathrm{C}_6\mathrm{H}_5\mathrm{NH}_2\)) is a weak base and reacts with water as follows:
\[
\mathrm{C}_6\mathrm{H}_5\mathrm{NH}_2 + \mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{C}_6\mathrm{H}_5\mathrm{NH}_3^+ + \mathrm{OH}^-
\]
The equilibrium expression for the base dissociation constant \(K_b\) is:
\[
K_b = \frac{[\mathrm{C}_6\mathrm{H}_5\mathrm{NH}_3^+][\mathrm{OH}^-]}{[\mathrm{C}_6\mathrm{H}_5\mathrm{NH}_2]}
\]
Step 3: Calculate the equilibrium concentrations
Initially, the concentration of aniline is 0.334 M. At equilibrium, let \(x\) be the concentration of \(\mathrm{OH}^-\) ions formed, which we have already calculated as \(1.080 \times 10^{-5} \, \text{M}\).
Thus, the concentration of \(\mathrm{C}_6\mathrm{H}_5\mathrm{NH}_3^+\) is also \(1.080 \times 10^{-5} \, \text{M}\), and the concentration of \(\mathrm{C}_6\mathrm{H}_5\mathrm{NH}_2\) is:
\[
[\mathrm{C}_6\mathrm{H}_5\mathrm{NH}_2] = 0.334 - 1.080 \times 10^{-5} \approx 0.334 \, \text{M}
\]
Step 4: Calculate \(K_b\)
Substitute the equilibrium concentrations into the \(K_b\) expression:
\[
K_b = \frac{(1.080 \times 10^{-5})(1.080 \times 10^{-5})}{0.334}
\]
\[
K_b = \frac{1.1664 \times 10^{-10}}{0.334} \approx 3.491 \times 10^{-10}
\]