To find the \( 99\% \) confidence interval for the mean \( \mu \) when \( n = 81 \), we use the formula:
\[
\bar{x} \pm z \frac{s}{\sqrt{n}}
\]
Where:
- \( \bar{x} = 33.2 \)
- \( z = 2.576 \) (Z-score for \( 99\% \) confidence level)
- \( s = 3.3 \)
- \( n = 81 \)
Calculating the margin of error:
\[
\text{Margin of Error} = z \frac{s}{\sqrt{n}} = 2.576 \cdot \frac{3.3}{\sqrt{81}} = 2.576 \cdot \frac{3.3}{9} = 2.576 \cdot 0.3667 \approx 0.944
\]
Thus, the confidence interval is:
\[
(33.2 - 0.944, 33.2 + 0.944) = (32.256, 34.144)
\]
For \( n = 324 \), we apply the same formula:
\[
\bar{x} \pm z \frac{s}{\sqrt{n}}
\]
Where:
Calculating the margin of error:
\[
\text{Margin of Error} = z \frac{s}{\sqrt{n}} = 2.576 \cdot \frac{3.3}{\sqrt{324}} = 2.576 \cdot \frac{3.3}{18} = 2.576 \cdot 0.1833 \approx 0.472
\]
Thus, the confidence interval is:
\[
(33.2 - 0.472, 33.2 + 0.472) = (32.728, 33.672)
\]
The width of the confidence interval for \( n = 81 \) is calculated as:
\[
\text{Width}_{n=81} = 34.144 - 32.256 = 1.888
\]
The width of the confidence interval for \( n = 324 \) is:
\[
\text{Width}_{n=324} = 33.672 - 32.728 = 0.944
\]
Quadrupling the sample size from \( n = 81 \) to \( n = 324 \) results in a decrease in the width of the confidence interval. Specifically, the widths are:
- Width for \( n = 81 \): \( 1.888 \)
- Width for \( n = 324 \): \( 0.944 \)
This demonstrates that increasing the sample size reduces the width of the confidence interval while holding the confidence coefficient fixed.
- \( 99\% \) confidence interval for \( \mu \) if \( n = 81 \): \( \boxed{(32.256, 34.144)} \)
- \( 99\% \) confidence interval for \( \mu \) if \( n = 324 \): \( \boxed{(32.728, 33.672)} \)
- Width of the confidence interval for \( n = 81 \): \( \boxed{1.888} \)
- Width of the confidence interval for \( n = 324 \): \( \boxed{0.944} \)