Questions: Case III. A + B + C = 0 vector mass, kg magnitude, N direction x-component y-component A 0.200 0° B 0.150 90° C verified:

Case III.  A + B + C = 0

vector  mass, kg  magnitude, N  direction  x-component  y-component
A  0.200   0°   
B  0.150   90°   
C      

verified:
Transcript text: Case III. $\quad \vec{A}+\vec{B}+\vec{C}=\overrightarrow{0}$ \begin{tabular}{|c|c|c|c|c|c|} \hline vector & mass, kg & magnitude, N & direction & x-component & y-component \\ \hline A & 0.200 & & $0^{0}$ & & \\ \hline$B$ & 0.150 & & $90^{\circ}$ & & \\ \hline C & & & & & \\ \hline \end{tabular} verified: $\qquad$
failed

Solution

failed
failed

Fill the table and verify the equation \(\vec{A}+\vec{B}+\vec{C}=\vec{0}\). Calculate the magnitude of A

Magnitude of A = \(0.200 kg \times 9.8 m/s^2 = 1.96 N\) Calculate the magnitude of B

Magnitude of B = \(0.150 kg \times 9.8 m/s^2 = 1.47 N\) Calculate the x and y components of A

\(A_x = 1.96 N \cos(0^\circ) = 1.96 N\) \(A_y = 1.96 N \sin(0^\circ) = 0 N\) Calculate the x and y components of B

\(B_x = 1.47 N \cos(90^\circ) = 0 N\) \(B_y = 1.47 N \sin(90^\circ) = 1.47 N\) Calculate the x and y components of C

For \(\vec{A} + \vec{B} + \vec{C} = \vec{0}\), we have: \(C_x = -A_x - B_x = -1.96 N - 0 N = -1.96 N\) \(C_y = -A_y - B_y = -0 N - 1.47 N = -1.47 N\) Calculate the magnitude of C

Magnitude of C = \(\sqrt{C_x^2 + C_y^2} = \sqrt{(-1.96)^2 + (-1.47)^2} = \sqrt{3.8416 + 2.1609} = \sqrt{6.0025} \approx 2.45 N\) Calculate the mass of C

Mass of C = \(2.45 N / 9.8 m/s^2 \approx 0.25 kg\) Calculate the direction of C

Direction of C = \(\arctan(\frac{C_y}{C_x}) = \arctan(\frac{-1.47}{-1.96}) = \arctan(0.75) \approx 36.9^\circ\) Since both \(C_x\) and \(C_y\) are negative, the angle is in the third quadrant. Therefore, the direction of C is \(180^\circ + 36.9^\circ = 216.9^\circ\)

\begin{tabular}{|c|c|c|c|c|c|} \hline vector & mass, kg & magnitude, N & direction & x-component & y-component \\ \hline A & 0.200 & 1.96 & \(0^{\circ}\) & 1.96 & 0 \\ \hline B & 0.150 & 1.47 & \(90^{\circ}\) & 0 & 1.47 \\ \hline C & 0.25 & 2.45 & \(216.9^{\circ}\) & -1.96 & -1.47 \\ \hline \end{tabular}

Verification: \(A_x + B_x + C_x = 1.96 + 0 - 1.96 = 0\) and \(A_y + B_y + C_y = 0 + 1.47 - 1.47 = 0\), therefore \(\vec{A}+\vec{B}+\vec{C}=\vec{0}\).

\begin{tabular}{|c|c|c|c|c|c|} \hline vector & mass, kg & magnitude, N & direction & x-component & y-component \\ \hline A & 0.200 & 1.96 & \(0^{\circ}\) & 1.96 & 0 \\ \hline B & 0.150 & 1.47 & \(90^{\circ}\) & 0 & 1.47 \\ \hline C & 0.25 & 2.45 & \(216.9^{\circ}\) & -1.96 & -1.47 \\ \hline \end{tabular} \(A_x + B_x + C_x = 0\) and \(A_y + B_y + C_y = 0\), therefore \(\vec{A}+\vec{B}+\vec{C}=\vec{0}\).

Was this solution helpful?
failed
Unhelpful
failed
Helpful