Questions: Consider the function f(t)= 0 if 0 ≤ t<4π sin(t−4π) if 4π ≤ t a. Use the graph of this function to write it in terms of the Heaviside function. Use h(t-a) for the Heaviside function shifted a units horizontally. f(t)= b. Find the Laplace transform F(s)=Lf(t). F(s)=Lf(t)=

Consider the function

f(t)=
 0 if 0 ≤ t<4π
sin(t−4π) if 4π ≤ t

a. Use the graph of this function to write it in terms of the Heaviside function. Use h(t-a) for the Heaviside function shifted a units horizontally.

f(t)=

b. Find the Laplace transform F(s)=Lf(t).

F(s)=Lf(t)=
Transcript text: Consider the function \[ f(t)=\left\{\begin{array}{ll} 0 & \text { if } 0 \leq t<4 \pi \\ \sin (t-4 \pi) & \text { if } 4 \pi \leq t \end{array}\right. \] a. Use the graph of this function to write it in terms of the Heaviside function. Use $h(t-a)$ for the Heaviside function shifted $a$ units horizontally. \[ f(t)= \] $\square$ help (formulas) b. Find the Laplace transform $F(s)=\mathcal{L}\{f(t)\}$. \[ F(s)=\mathcal{L}\{f(t)\}= \] $\square$ help (formulas)
failed

Solution

failed
failed

Solution Steps

Solution Approach

a. To express the given function \( f(t) \) in terms of the Heaviside function, we need to recognize that the Heaviside function \( h(t-a) \) is 0 for \( t < a \) and 1 for \( t \geq a \). We can use this property to rewrite \( f(t) \) by shifting the sine function using the Heaviside function.

b. To find the Laplace transform \( F(s) \) of \( f(t) \), we will use the properties of the Laplace transform, particularly the shifting theorem. The Laplace transform of \( \sin(t) \) is known, and we will apply the shifting property to account for the Heaviside function.

Step 1: Express \( f(t) \) in terms of the Heaviside function

Given the function: \[ f(t) = \begin{cases} 0 & \text{if } 0 \leq t < 4\pi \\ \sin(t - 4\pi) & \text{if } 4\pi \leq t \end{cases} \] We can use the Heaviside function \( h(t - a) \) to rewrite \( f(t) \). The Heaviside function \( h(t - 4\pi) \) is 0 for \( t < 4\pi \) and 1 for \( t \geq 4\pi \). Therefore, we can express \( f(t) \) as: \[ f(t) = \sin(t - 4\pi) \cdot h(t - 4\pi) \]

Step 2: Find the Laplace transform \( F(s) = \mathcal{L}\{f(t)\} \)

To find the Laplace transform of \( f(t) \), we use the shifting property of the Laplace transform. The Laplace transform of \( \sin(t) \) is: \[ \mathcal{L}\{\sin(t)\} = \frac{1}{s^2 + 1} \] Using the shifting property \( \mathcal{L}\{f(t - a)h(t - a)\} = e^{-as}F(s) \), where \( a = 4\pi \), we get: \[ \mathcal{L}\{\sin(t - 4\pi)h(t - 4\pi)\} = e^{-4\pi s} \cdot \frac{1}{s^2 + 1} \]

Final Answer

a. The function \( f(t) \) in terms of the Heaviside function is: \[ f(t) = \sin(t - 4\pi) \cdot h(t - 4\pi) \]

b. The Laplace transform \( F(s) = \mathcal{L}\{f(t)\} \) is: \[ F(s) = \mathcal{L}\{f(t)\} = \frac{e^{-4\pi s}}{s^2 + 1} \]

\[ \boxed{F(s) = \frac{e^{-4\pi s}}{s^2 + 1}} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful