Questions: Give the exact value of the expression without using a calculator.
cos(tan^(-1)(-12/5) + tan^(-1)(4/3))
cos(tan^(-1)(-12/5) + tan^(-1)(4/3))=□
(Simplify your answer, including any radicals. Use integers or fractions for any numbers)
Transcript text: Give the exact value of the expression without using a calculator.
\[
\cos \left(\tan ^{-1}\left(-\frac{12}{5}\right)+\tan ^{-1} \frac{4}{3}\right)
\]
\[
\cos \left(\tan ^{-1}\left(-\frac{12}{5}\right)+\tan ^{-1} \frac{4}{3}\right)=\square
\]
(Simplify your answer, including any radicals. Use integers or fractions for any $n$
Solution
Solution Steps
Step 1: Calculate \( \cos A \) and \( \sin A \)
Given \( A = \tan^{-1}\left(-\frac{12}{5}\right) \), we can find \( \cos A \) and \( \sin A \) using the definitions of cosine and sine in a right triangle. The values are calculated as follows:
\[
\cos A = \frac{1}{\sqrt{1 + \left(-\frac{12}{5}\right)^2}} = \frac{1}{\sqrt{1 + \frac{144}{25}}} = \frac{1}{\sqrt{\frac{169}{25}}} = \frac{5}{13}
\]
\[
\sin A = \frac{-\frac{12}{5}}{\sqrt{1 + \left(-\frac{12}{5}\right)^2}} = \frac{-\frac{12}{5}}{\sqrt{\frac{169}{25}}} = \frac{-12}{13}
\]
Step 2: Calculate \( \cos B \) and \( \sin B \)
For \( B = \tan^{-1}\left(\frac{4}{3}\right) \), we find \( \cos B \) and \( \sin B \) similarly:
\[
\cos B = \frac{1}{\sqrt{1 + \left(\frac{4}{3}\right)^2}} = \frac{1}{\sqrt{1 + \frac{16}{9}}} = \frac{1}{\sqrt{\frac{25}{9}}} = \frac{3}{5}
\]
\[
\sin B = \frac{\frac{4}{3}}{\sqrt{1 + \left(\frac{4}{3}\right)^2}} = \frac{\frac{4}{3}}{\sqrt{\frac{25}{9}}} = \frac{4}{5}
\]
Step 3: Use the Angle Addition Formula
Now, we apply the cosine angle addition formula:
\[
\cos(A + B) = \cos A \cos B - \sin A \sin B
\]
Substituting the values we calculated:
\[
\cos(A + B) = \left(\frac{5}{13}\right) \left(\frac{3}{5}\right) - \left(-\frac{12}{13}\right) \left(\frac{4}{5}\right)
\]
Calculating this gives:
\[
\cos(A + B) = \frac{15}{65} + \frac{48}{65} = \frac{63}{65}
\]
Final Answer
Thus, the exact value of the expression is
\[
\boxed{\frac{63}{65}}
\]