The given function is \( P(t) = \frac{Kt^2}{t^2 + b} \).
We need to find \( \lim_{t \to \infty} P(t) \).
To evaluate this limit, we can divide both the numerator and the denominator by the highest power of \( t \) in the denominator, which is \( t^2 \):
\( \lim_{t \to \infty} P(t) = \lim_{t \to \infty} \frac{\frac{Kt^2}{t^2}}{\frac{t^2}{t^2} + \frac{b}{t^2}} = \lim_{t \to \infty} \frac{K}{1 + \frac{b}{t^2}} \)
As \( t \to \infty \), \( \frac{b}{t^2} \to 0 \).
Therefore, \( \lim_{t \to \infty} P(t) = \frac{K}{1 + 0} = K \).
Given \( K = 500 \) and \( b = 18 \), the carrying capacity is \( K \).
So, \( \lim_{t \to \infty} P(t) = 500 \).
The maximum growth rate occurs at the inflection point of the population curve. This is where the second derivative of \( P(t) \) is equal to zero.
First, let's find the first derivative \( P'(t) \), which represents the growth rate.
\( P(t) = \frac{Kt^2}{t^2 + b} \)
Using the quotient rule \( (\frac{u}{v})' = \frac{u'v - uv'}{v^2} \), where \( u = Kt^2 \) and \( v = t^2 + b \).
\( u' = 2Kt \)
\( v' = 2t \)
\( P'(t) = \frac{(2Kt)(t^2 + b) - (Kt^2)(2t)}{(t^2 + b)^2} \)
\( P'(t) = \frac{2Kt^3 + 2Kbt - 2Kt^3}{(t^2 + b)^2} \)
\( P'(t) = \frac{2Kbt}{(t^2 + b)^2} \)
Now, find the second derivative \( P''(t) \).
Let \( u = 2Kbt \) and \( v = (t^2 + b)^2 \).
\( u' = 2Kb \)
\( v' = 2(t^2 + b)(2t) = 4t(t^2 + b) \)
\( P''(t) = \frac{(2Kb)(t^2 + b)^2 - (2Kbt)(4t(t^2 + b))}{((t^2 + b)^2)^2} \)
\( P''(t) = \frac{(2Kb)(t^2 + b)^2 - 8Kb t^2 (t^2 + b)}{(t^2 + b)^4} \)
Factor out \( 2Kb(t^2 + b) \) from the numerator:
\( P''(t) = \frac{2Kb(t^2 + b)[(t^2 + b) - 4t^2]}{(t^2 + b)^4} \)
\( P''(t) = \frac{2Kb(t^2 + b - 4t^2)}{(t^2 + b)^3} \)
\( P''(t) = \frac{2Kb(b - 3t^2)}{(t^2 + b)^3} \)
To find the inflection point, set \( P''(t) = 0 \):
\( \frac{2Kb(b - 3t^2)}{(t^2 + b)^3} = 0 \)
Since \( K \) and \( b \) are positive, \( 2Kb \neq 0 \). Also, \( (t^2 + b)^3 \neq 0 \) for \( t \ge 0 \).
So, we must have \( b - 3t^2 = 0 \).
\( 3t^2 = b \)
\( t^2 = \frac{b}{3} \)
Since \( t \ge 0 \), \( t = \sqrt{\frac{b}{3}} \).
Given \( K = 500 \) and \( b = 18 \):
\( t = \sqrt{\frac{18}{3}} = \sqrt{6} \).
From the previous step, we found that the maximum growth rate occurs at \( t = \sqrt{\frac{b}{3}} \). This expression is already in terms of \( K \) and \( b \), although \( K \) does not appear in the final expression for \( t \).
The final answer is \( \boxed{\text{a. } 500, \text{ b. } \sqrt{6}, \text{ c. } \sqrt{\frac{b}{3}}} \)