Molality (\(m\)) is defined as the number of moles of solute per kilogram of solvent. First, we need to calculate the moles of testosterone:
\[
\text{Moles of testosterone} = \frac{\text{mass of testosterone}}{\text{molar mass of testosterone}} = \frac{11.39 \, \text{g}}{288.4 \, \text{g/mol}} = 0.0395 \, \text{mol}
\]
Next, convert the mass of chloroform to kilograms:
\[
\text{Mass of chloroform in kg} = \frac{297.3 \, \text{g}}{1000} = 0.2973 \, \text{kg}
\]
Now, calculate the molality:
\[
m = \frac{\text{moles of testosterone}}{\text{mass of chloroform in kg}} = \frac{0.0395 \, \text{mol}}{0.2973 \, \text{kg}} = 0.1329 \, \text{m}
\]
The boiling point elevation (\(\Delta T_b\)) can be calculated using the formula:
\[
\Delta T_b = K_b \times m
\]
where \(K_b\) for chloroform is \(3.67 \, ^\circ \text{C/m}\). Substituting the values:
\[
\Delta T_b = 3.67 \, ^\circ \text{C/m} \times 0.1329 \, \text{m} = 0.4875 \, ^\circ \text{C}
\]
The boiling point of the solution is the sum of the boiling point of the pure solvent and the boiling point elevation:
\[
\text{Boiling point of solution} = 61.70 \, ^\circ \text{C} + 0.4875 \, ^\circ \text{C} = 62.1875 \, ^\circ \text{C}
\]
- The molality of the solution is \(\boxed{0.1329 \, \text{m}}\).
- The boiling point of the solution is \(\boxed{62.19 \, ^\circ \text{C}}\).