First, we need to calculate the number of moles of $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ using their given masses and molar masses.
The molar mass of $\mathrm{H}_{2}$ is:
\[
2.016 \, \text{g/mol}
\]
The molar mass of $\mathrm{O}_{2}$ is:
\[
32.00 \, \text{g/mol}
\]
Using the formula:
\[
\text{moles} = \frac{\text{mass}}{\text{molar mass}}
\]
For $\mathrm{H}_{2}$:
\[
\text{moles of } \mathrm{H}_{2} = \frac{50.0 \, \text{g}}{2.016 \, \text{g/mol}} = 24.80 \, \text{mol}
\]
For $\mathrm{O}_{2}$:
\[
\text{moles of } \mathrm{O}_{2} = \frac{109.0 \, \text{g}}{32.00 \, \text{g/mol}} = 3.406 \, \text{mol}
\]
The balanced chemical equation is:
\[
2 \mathrm{H}_{2}(\mathrm{~g}) + \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\]
From the equation, 2 moles of $\mathrm{H}_{2}$ react with 1 mole of $\mathrm{O}_{2}$. Therefore, we need to compare the mole ratio of the reactants to determine the limiting reactant.
The required moles of $\mathrm{O}_{2}$ for 24.80 moles of $\mathrm{H}_{2}$:
\[
\text{required moles of } \mathrm{O}_{2} = \frac{24.80 \, \text{mol} \, \mathrm{H}_{2}}{2} = 12.40 \, \text{mol} \, \mathrm{O}_{2}
\]
Since we only have 3.406 moles of $\mathrm{O}_{2}$, $\mathrm{O}_{2}$ is the limiting reactant.
Using the limiting reactant ($\mathrm{O}_{2}$), we can calculate the moles of $\mathrm{H}_{2} \mathrm{O}$ produced. According to the balanced equation, 1 mole of $\mathrm{O}_{2}$ produces 2 moles of $\mathrm{H}_{2} \mathrm{O}$.
\[
\text{moles of } \mathrm{H}_{2} \mathrm{O} = 2 \times \text{moles of } \mathrm{O}_{2} = 2 \times 3.406 \, \text{mol} = 6.812 \, \text{mol}
\]
\[
\boxed{6.812 \, \text{mol} \, \mathrm{H}_{2} \mathrm{O}}
\]