The cross-sectional area \( A \) of a circle is given by:
\[ A = \pi r^2 \]
where \( r \) is the radius.
For the aorta:
\[ r_{\text{aorta}} = 1.00 \, \text{cm} = 0.0100 \, \text{m} \]
\[ A_{\text{aorta}} = \pi (0.0100 \, \text{m})^2 = \pi (0.0001 \, \text{m}^2) = 0.0003142 \, \text{m}^2 \]
The radius of a capillary is:
\[ r_{\text{capillary}} = 6.50 \, \mu\text{m} = 6.50 \times 10^{-6} \, \text{m} \]
The cross-sectional area of one capillary is:
\[ A_{\text{capillary}} = \pi (6.50 \times 10^{-6} \, \text{m})^2 = \pi (4.225 \times 10^{-11} \, \text{m}^2) = 1.327 \times 10^{-10} \, \text{m}^2 \]
The total cross-sectional area of all capillaries is:
\[ A_{\text{total capillaries}} = 2.00 \times 10^9 \times 1.327 \times 10^{-10} \, \text{m}^2 = 0.2654 \, \text{m}^2 \]
The volume flow rate \( Q \) must be the same in the aorta and the capillaries. The volume flow rate is given by:
\[ Q = A \cdot v \]
where \( v \) is the average speed.
For the aorta:
\[ Q_{\text{aorta}} = A_{\text{aorta}} \cdot v_{\text{aorta}} = 0.0003142 \, \text{m}^2 \cdot 0.344 \, \text{m/s} = 0.0001081 \, \text{m}^3/\text{s} \]
For the capillaries:
\[ Q_{\text{capillaries}} = A_{\text{total capillaries}} \cdot v_{\text{capillaries}} \]
Since \( Q_{\text{aorta}} = Q_{\text{capillaries}} \):
\[ 0.0001081 \, \text{m}^3/\text{s} = 0.2654 \, \text{m}^2 \cdot v_{\text{capillaries}} \]
Solving for \( v_{\text{capillaries}} \):
\[ v_{\text{capillaries}} = \frac{0.0001081 \, \text{m}^3/\text{s}}{0.2654 \, \text{m}^2} = 0.0004074 \, \text{m/s} \]
\[ v_{\text{capillaries}} = 0.0004074 \, \text{m/s} \times 1000 \, \text{mm/m} = 0.4074 \, \text{mm/s} \]
\(\boxed{0.4074 \, \text{mm/s}}\)