- Resistor A: \( 19 \, \Omega \)
- Resistor B: \( 16 \, \Omega \)
- Voltage source 1: \( 10 \, V \)
- Voltage source 2: \( 25 \, V \)
Kirchhoff's Voltage Law states that the sum of all voltages around a closed loop must equal zero. For the given circuit, we can write the KVL equation as:
\[ 10V - V_A - V_o - V_B + 25V = 0 \]
Using Ohm's Law (\( V = IR \)), we need to find the current \( I \) in the circuit. The total resistance \( R_{total} \) is the sum of resistances A and B:
\[ R_{total} = A + B = 19 \, \Omega + 16 \, \Omega = 35 \, \Omega \]
The total voltage \( V_{total} \) is the sum of the voltage sources:
\[ V_{total} = 10V + 25V = 35V \]
The current \( I \) in the circuit is:
\[ I = \frac{V_{total}}{R_{total}} = \frac{35V}{35 \, \Omega} = 1A \]
\[ V_A = I \times A = 1A \times 19 \, \Omega = 19V \]
\[ V_B = I \times B = 1A \times 16 \, \Omega = 16V \]
Using the KVL equation:
\[ 10V - 19V - V_o - 16V + 25V = 0 \]
\[ 10V + 25V - 19V - 16V - V_o = 0 \]
\[ 35V - 35V - V_o = 0 \]
\[ -V_o = 0 \]
\[ V_o = 0V \]