Questions: Does the random paired data below show a linear correlation?
x y
------
2 16.44
3 28.56
4 21.18
5 27.8
6 25.62
7 27.54
8 35.76
9 34.28
10 33.8
11 32.42
12 37.74
13 34.66
14 44.78
15 38.4
When in doubt, assume the original claim is There is linear correlation.
Transcript text: Does the random paired data below show a linear correlation?
\begin{tabular}{|c|c|}
\hline$x$ & $y$ \\
\hline 2 & 16.44 \\
\hline 3 & 28.56 \\
\hline 4 & 21.18 \\
\hline 5 & 27.8 \\
\hline 6 & 25.62 \\
\hline 7 & 27.54 \\
\hline 8 & 35.76 \\
\hline 9 & 34.28 \\
\hline 10 & 33.8 \\
\hline 11 & 32.42 \\
\hline 12 & 37.74 \\
\hline 13 & 34.66 \\
\hline 14 & 44.78 \\
\hline 15 & 38.4 \\
\hline
\end{tabular}
When in doubt, assume the original claim is There is linear correlation.
Solution
Solution Steps
Step 1: Calculate Covariance and Standard Deviations
The covariance between \( X \) and \( Y \) is calculated as:
\[
\text{Cov}(X,Y) = 27.1577
\]
The standard deviation of \( X \) is:
\[
\sigma_X = 4.1833
\]
The standard deviation of \( Y \) is:
\[
\sigma_Y = 7.3929
\]
Step 2: Calculate Correlation Coefficient
The correlation coefficient \( r \) is computed using the formula:
\[
r = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = 0.8781
\]
Step 3: Calculate Means of \( X \) and \( Y \)
The mean of \( X \) is:
\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 8.5
\]
The mean of \( Y \) is:
\[
\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 31.3557
\]
Step 4: Calculate Slope \( \beta \)
The numerator for \( \beta \) is calculated as:
\[
\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} = 4084.38 - 14 \cdot 8.5 \cdot 31.3557 = 353.05
\]
The denominator for \( \beta \) is:
\[
\sum_{i=1}^{n} x_i^2 - n \bar{x}^2 = 1239 - 14 \cdot 8.5^2 = 227.5
\]
Thus, the slope \( \beta \) is:
\[
\beta = \frac{353.05}{227.5} = 1.5519
\]
Step 6: Write the Equation of the Line of Best Fit
The equation of the line of best fit is:
\[
y = 18.1648 + 1.5519x
\]
Step 7: Summary of Results
The correlation coefficient from the linear regression is:
\[
\text{Correlation Coefficient} = 0.8781
\]
The intercept is:
\[
\alpha = 18.1648
\]
The slope is:
\[
\beta = 1.5519
\]
Final Answer
The random paired data shows a linear correlation. The correlation coefficient is \( \boxed{0.8781} \).