Questions: Determine whether the improper integral diverges or converges. ∫ from 0 to ∞ of (1 / (e^(4x) + e^(-4x))) dx converges diverges Evaluate the integral if it converges. (If the quantity diverges, enter DIVERGES.)

Determine whether the improper integral diverges or converges.

∫ from 0 to ∞ of (1 / (e^(4x) + e^(-4x))) dx

converges
diverges

Evaluate the integral if it converges. (If the quantity diverges, enter DIVERGES.)
Transcript text: Determine whether the improper integral diverges or converges. \[ \int_{0}^{\infty} \frac{1}{e^{4 x}+e^{-4 x}} d x \] converges diverges Evaluate the integral if it converges. (If the quantity diverges, enter DIVERGES.) $\square$
failed

Solution

failed
failed

Solution Steps

To determine whether the improper integral converges or diverges, we can analyze the behavior of the integrand as \( x \) approaches the limits of integration (0 and \(\infty\)). If the integral converges, we can evaluate it using numerical integration methods.

Step 1: Analyze the Integral

We need to evaluate the improper integral

\[ \int_{0}^{\infty} \frac{1}{e^{4x} + e^{-4x}} \, dx. \]

To determine whether this integral converges or diverges, we will analyze the behavior of the integrand as \( x \) approaches 0 and \( \infty \).

Step 2: Behavior as \( x \to 0 \)

As \( x \to 0 \), we can approximate the integrand:

\[ e^{4x} \approx 1 \quad \text{and} \quad e^{-4x} \approx 1. \]

Thus,

\[ e^{4x} + e^{-4x} \approx 2, \]

leading to

\[ \frac{1}{e^{4x} + e^{-4x}} \approx \frac{1}{2}. \]

The integral near 0 behaves like

\[ \int_{0}^{\epsilon} \frac{1}{2} \, dx = \frac{\epsilon}{2}, \]

which converges as \( \epsilon \to 0 \).

Step 3: Behavior as \( x \to \infty \)

As \( x \to \infty \), we have

\[ e^{4x} \to \infty \quad \text{and} \quad e^{-4x} \to 0. \]

Thus,

\[ e^{4x} + e^{-4x} \approx e^{4x}, \]

leading to

\[ \frac{1}{e^{4x} + e^{-4x}} \approx \frac{1}{e^{4x}}. \]

The integral behaves like

\[ \int_{M}^{\infty} \frac{1}{e^{4x}} \, dx, \]

which converges since

\[ \int \frac{1}{e^{4x}} \, dx = -\frac{1}{4e^{4x}}. \]

Step 4: Evaluate the Integral

Since the integral converges, we can evaluate it:

\[ \int_{0}^{\infty} \frac{1}{e^{4x} + e^{-4x}} \, dx. \]

Using the substitution \( u = e^{4x} \), we have \( du = 4e^{4x} \, dx \) or \( dx = \frac{du}{4u} \). The limits change from \( x = 0 \) to \( x = \infty \) which corresponds to \( u = 1 \) to \( u = \infty \):

\[ \int_{1}^{\infty} \frac{1}{u + \frac{1}{u}} \cdot \frac{du}{4u} = \frac{1}{4} \int_{1}^{\infty} \frac{1}{u^2 + 1} \, du. \]

The integral

\[ \int \frac{1}{u^2 + 1} \, du = \tan^{-1}(u), \]

evaluated from 1 to \(\infty\) gives:

\[ \left[ \tan^{-1}(u) \right]_{1}^{\infty} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}. \]

Thus,

\[ \int_{0}^{\infty} \frac{1}{e^{4x} + e^{-4x}} \, dx = \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{16}. \]

Final Answer

The integral converges and its value is

\[ \boxed{\frac{\pi}{16}}. \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful