Questions: Complete the following truth table. Use T for true and F for false. You may add more columns, but those added columns will not be graded. p q ~p ↔ q q → ~p ---------------------- T T T F F T F F

Complete the following truth table. Use T for true and F for false.
You may add more columns, but those added columns will not be graded.

 p  q  ~p ↔ q  q → ~p 
----------------------
 T  T                 
 T  F                 
 F  T                 
 F  F
Transcript text: Complete the following truth table. Use T for true and F for false. You may add more columns, but those added columns will not be graded. \begin{tabular}{|c|c|c|c|} \hline$p$ & $q$ & $\sim p \leftrightarrow q$ & $q \rightarrow \sim p$ \\ \hline T & T & $\square$ & $\square$ \\ \hline T & F & $\square$ & $\square$ \\ \hline F & T & $\square$ & $\square$ \\ \hline F & F & $\square$ & $\square$ \\ \hline \end{tabular}
failed

Solution

failed
failed

Solution Steps

To complete the truth table, we need to evaluate the logical expressions for each combination of truth values for \( p \) and \( q \). Specifically, we need to determine the values of \( \sim p \leftrightarrow q \) and \( q \rightarrow \sim p \) for each row in the table.

  1. For each combination of \( p \) and \( q \):
    • Calculate \( \sim p \) (the negation of \( p \)).
    • Evaluate \( \sim p \leftrightarrow q \) (biconditional: true if both sides are the same).
    • Evaluate \( q \rightarrow \sim p \) (implication: false only if \( q \) is true and \( \sim p \) is false).
Step 1: Define the Truth Values

We consider the truth values for \( p \) and \( q \) as follows:

  • \( p = T \), \( q = T \)
  • \( p = T \), \( q = F \)
  • \( p = F \), \( q = T \)
  • \( p = F \), \( q = F \)
Step 2: Calculate \( \sim p \)

The negation of \( p \) is calculated for each case:

  • If \( p = T \), then \( \sim p = F \).
  • If \( p = F \), then \( \sim p = T \).
Step 3: Evaluate \( \sim p \leftrightarrow q \)

We evaluate the biconditional \( \sim p \leftrightarrow q \) for each combination:

  • For \( (T, T) \): \( \sim p = F \) and \( q = T \) gives \( F \leftrightarrow T = F \).
  • For \( (T, F) \): \( \sim p = F \) and \( q = F \) gives \( F \leftrightarrow F = T \).
  • For \( (F, T) \): \( \sim p = T \) and \( q = T \) gives \( T \leftrightarrow T = T \).
  • For \( (F, F) \): \( \sim p = T \) and \( q = F \) gives \( T \leftrightarrow F = F \).
Step 4: Evaluate \( q \rightarrow \sim p \)

Next, we evaluate the implication \( q \rightarrow \sim p \):

  • For \( (T, T) \): \( q = T \) and \( \sim p = F \) gives \( T \rightarrow F = F \).
  • For \( (T, F) \): \( q = F \) and \( \sim p = F \) gives \( F \rightarrow F = T \).
  • For \( (F, T) \): \( q = T \) and \( \sim p = T \) gives \( T \rightarrow T = T \).
  • For \( (F, F) \): \( q = F \) and \( \sim p = T \) gives \( F \rightarrow T = T \).
Step 5: Compile the Results

The completed truth table is as follows:

\[ \begin{array}{|c|c|c|c|} \hline p & q & \sim p \leftrightarrow q & q \rightarrow \sim p \\ \hline T & T & F & F \\ T & F & T & T \\ F & T & T & T \\ F & F & F & T \\ \hline \end{array} \]

Final Answer

The completed truth table values are:

  • For \( (T, T) \): \( \sim p \leftrightarrow q = F \), \( q \rightarrow \sim p = F \)
  • For \( (T, F) \): \( \sim p \leftrightarrow q = T \), \( q \rightarrow \sim p = T \)
  • For \( (F, T) \): \( \sim p \leftrightarrow q = T \), \( q \rightarrow \sim p = T \)
  • For \( (F, F) \): \( \sim p \leftrightarrow q = F \), \( q \rightarrow \sim p = T \)

Thus, the final answer is: \[ \boxed{ \begin{array}{|c|c|c|c|} \hline p & q & \sim p \leftrightarrow q & q \rightarrow \sim p \\ \hline T & T & F & F \\ T & F & T & T \\ F & T & T & T \\ F & F & F & T \\ \hline \end{array} } \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful