Given the probability distribution table for the random variable \( X \):
\[
\begin{array}{|c|c|c|c|c|c|}
\hline
X & 3 & 5 & 7 & 9 & 11 \\
\hline
P(X=X) & 0.2 & 0.2 & a & a & 0.2 \\
\hline
\end{array}
\]
Assuming \( P(X=7) = P(X=9) = a \), we can set up the equation for the total probability:
\[
0.2 + 0.2 + a + a + 0.2 = 1
\]
This simplifies to:
\[
0.6 + 2a = 1
\]
Solving for \( a \):
\[
2a = 0.4 \implies a = 0.2
\]
Thus, the missing probability value is:
\[
\boxed{a = 0.2}
\]
To find \( P(X \geq 7) \):
\[
P(X \geq 7) = P(X=7) + P(X=9) + P(X=11) = a + a + 0.2 = 0.2 + 0.2 + 0.2 = 0.6
\]
Thus,
\[
\boxed{P(X \geq 7) = 0.6}
\]
To find \( P(3 < X < 9) \):
\[
P(3 < X < 9) = P(X=5) + P(X=7) = 0.2 + 0.2 = 0.4
\]
Thus,
\[
\boxed{P(3 < X < 9) = 0.4}
\]
The mean \( \mu \) of the distribution is calculated as follows:
\[
\mu = 3 \times 0.2 + 5 \times 0.2 + 7 \times 0.2 + 9 \times 0.2 + 11 \times 0.2 = 7.0
\]
The variance \( \sigma^2 \) is calculated as:
\[
\sigma^2 = (3 - 7.0)^2 \times 0.2 + (5 - 7.0)^2 \times 0.2 + (7 - 7.0)^2 \times 0.2 + (9 - 7.0)^2 \times 0.2 + (11 - 7.0)^2 \times 0.2 = 8.0
\]
The standard deviation \( \sigma \) is:
\[
\sigma = \sqrt{\sigma^2} = \sqrt{8.0} \approx 2.828
\]
- Value of \( a \): \( \boxed{0.2} \)
- \( P(X \geq 7) \): \( \boxed{0.6} \)
- \( P(3 < X < 9) \): \( \boxed{0.4} \)
- Mean: \( \boxed{7.0} \)
- Variance: \( \boxed{8.0} \)
- Standard Deviation: \( \boxed{2.828} \)