To perform a first derivative test, we first need to find the derivative of the function \( f(x) = x^{\frac{2}{3}}(x-4) \).
Using the product rule, where if \( u(x) = x^{\frac{2}{3}} \) and \( v(x) = (x-4) \), then \( f'(x) = u'(x)v(x) + u(x)v'(x) \).
First, find \( u'(x) \) and \( v'(x) \):
- \( u(x) = x^{\frac{2}{3}} \) implies \( u'(x) = \frac{2}{3}x^{-\frac{1}{3}} \).
- \( v(x) = x - 4 \) implies \( v'(x) = 1 \).
Now, apply the product rule:
\[
f'(x) = \left(\frac{2}{3}x^{-\frac{1}{3}}\right)(x-4) + x^{\frac{2}{3}}(1)
\]
\[
f'(x) = \frac{2}{3}x^{-\frac{1}{3}}(x-4) + x^{\frac{2}{3}}
\]
Simplify the expression for \( f'(x) \):
\[
f'(x) = \frac{2}{3}x^{-\frac{1}{3}}(x-4) + x^{\frac{2}{3}}
\]
\[
= \frac{2}{3}x^{-\frac{1}{3}}x - \frac{8}{3}x^{-\frac{1}{3}} + x^{\frac{2}{3}}
\]
\[
= \frac{2}{3}x^{\frac{2}{3}} - \frac{8}{3}x^{-\frac{1}{3}} + x^{\frac{2}{3}}
\]
\[
= \frac{5}{3}x^{\frac{2}{3}} - \frac{8}{3}x^{-\frac{1}{3}}
\]
Critical points occur where \( f'(x) = 0 \) or where \( f'(x) \) is undefined.
Set \( f'(x) = 0 \):
\[
\frac{5}{3}x^{\frac{2}{3}} - \frac{8}{3}x^{-\frac{1}{3}} = 0
\]
Multiply through by \( 3x^{\frac{1}{3}} \) to clear the fractions:
\[
5x - 8 = 0
\]
\[
5x = 8
\]
\[
x = \frac{8}{5}
\]
Check where \( f'(x) \) is undefined:
- \( f'(x) \) is undefined at \( x = 0 \) because of the term \( x^{-\frac{1}{3}} \).
Thus, the critical points are \( x = \frac{8}{5} \) and \( x = 0 \).
Examine the sign of \( f'(x) \) around the critical points \( x = \frac{8}{5} \) and \( x = 0 \).
For \( x < 0 \), choose \( x = -1 \):
\[
f'(-1) = \frac{5}{3}(-1)^{\frac{2}{3}} - \frac{8}{3}(-1)^{-\frac{1}{3}} = \frac{5}{3} - \frac{8}{3}(-1) = \frac{5}{3} + \frac{8}{3} = \frac{13}{3} > 0
\]
For \( 0 < x < \frac{8}{5} \), choose \( x = 1 \):
\[
f'(1) = \frac{5}{3}(1)^{\frac{2}{3}} - \frac{8}{3}(1)^{-\frac{1}{3}} = \frac{5}{3} - \frac{8}{3} = -\frac{3}{3} = -1 < 0
\]
For \( x > \frac{8}{5} \), choose \( x = 2 \):
\[
f'(2) = \frac{5}{3}(2)^{\frac{2}{3}} - \frac{8}{3}(2)^{-\frac{1}{3}}
\]
Approximating:
\[
\approx \frac{5}{3}(1.5874) - \frac{8}{3}(0.7937) \approx \frac{5 \times 1.5874}{3} - \frac{8 \times 0.7937}{3} \approx 2.6457 - 2.1163 = 0.5294 > 0
\]
From the sign changes:
- \( x = 0 \) is a local maximum.
- \( x = \frac{8}{5} \) is a local minimum.
Evaluate \( f(x) \) at the critical points and endpoints of the interval \([-4, 4]\).
- \( f(-4) = (-4)^{\frac{2}{3}}(-4-4) = 4 \times (-8) = -32 \)
- \( f(0) = 0^{\frac{2}{3}}(0-4) = 0 \)
- \( f\left(\frac{8}{5}\right) = \left(\frac{8}{5}\right)^{\frac{2}{3}}\left(\frac{8}{5} - 4\right) \)
\[
\approx 1.5157 \times \left(\frac{8}{5} - \frac{20}{5}\right) = 1.5157 \times \left(-\frac{12}{5}\right) \approx -3.6377
\]
- \( f(4) = 4^{\frac{2}{3}}(4-4) = 0 \)
The absolute maximum value is \( 0 \) at \( x = 0 \) and \( x = 4 \), and the absolute minimum value is \(-32\) at \( x = -4 \).
- Critical points: \(\boxed{x = 0, \frac{8}{5}}\)
- Local maximum: \(\boxed{x = 0}\)
- Local minimum: \(\boxed{x = \frac{8}{5}}\)
- Absolute maximum: \(\boxed{f(x) = 0}\) at \( x = 0 \) and \( x = 4 \)
- Absolute minimum: \(\boxed{f(x) = -32}\) at \( x = -4 \)