Questions: Perform a first derivative test on the function f(x)=x^(2/3)(x-4) ;[-4,4]. a. Locate the critical points of the given function. b. Use the First Derivative Test to locate the local maximum and minimum values. c. Identify the absolute maximum and minimum values of the function on the given interval (when they exist).

Perform a first derivative test on the function f(x)=x^(2/3)(x-4) ;[-4,4].
a. Locate the critical points of the given function.
b. Use the First Derivative Test to locate the local maximum and minimum values.
c. Identify the absolute maximum and minimum values of the function on the given interval (when they exist).
Transcript text: Perform a first derivative test on the function $f(x)=x^{\frac{2}{3}}(x-4) ;[-4,4]$. a. Locate the critical points of the given function. b. Use the First Derivative Test to locate the local maximum and minimum values. c. Identify the absolute maximum and minimum values of the function on the given interval (when they exist).
failed

Solution

failed
failed

Solution Steps

Step 1: Find the First Derivative

To perform a first derivative test, we first need to find the derivative of the function \( f(x) = x^{\frac{2}{3}}(x-4) \).

Using the product rule, where if \( u(x) = x^{\frac{2}{3}} \) and \( v(x) = (x-4) \), then \( f'(x) = u'(x)v(x) + u(x)v'(x) \).

First, find \( u'(x) \) and \( v'(x) \):

  • \( u(x) = x^{\frac{2}{3}} \) implies \( u'(x) = \frac{2}{3}x^{-\frac{1}{3}} \).
  • \( v(x) = x - 4 \) implies \( v'(x) = 1 \).

Now, apply the product rule: \[ f'(x) = \left(\frac{2}{3}x^{-\frac{1}{3}}\right)(x-4) + x^{\frac{2}{3}}(1) \] \[ f'(x) = \frac{2}{3}x^{-\frac{1}{3}}(x-4) + x^{\frac{2}{3}} \]

Step 2: Simplify the First Derivative

Simplify the expression for \( f'(x) \): \[ f'(x) = \frac{2}{3}x^{-\frac{1}{3}}(x-4) + x^{\frac{2}{3}} \] \[ = \frac{2}{3}x^{-\frac{1}{3}}x - \frac{8}{3}x^{-\frac{1}{3}} + x^{\frac{2}{3}} \] \[ = \frac{2}{3}x^{\frac{2}{3}} - \frac{8}{3}x^{-\frac{1}{3}} + x^{\frac{2}{3}} \] \[ = \frac{5}{3}x^{\frac{2}{3}} - \frac{8}{3}x^{-\frac{1}{3}} \]

Step 3: Locate the Critical Points

Critical points occur where \( f'(x) = 0 \) or where \( f'(x) \) is undefined.

Set \( f'(x) = 0 \): \[ \frac{5}{3}x^{\frac{2}{3}} - \frac{8}{3}x^{-\frac{1}{3}} = 0 \] Multiply through by \( 3x^{\frac{1}{3}} \) to clear the fractions: \[ 5x - 8 = 0 \] \[ 5x = 8 \] \[ x = \frac{8}{5} \]

Check where \( f'(x) \) is undefined:

  • \( f'(x) \) is undefined at \( x = 0 \) because of the term \( x^{-\frac{1}{3}} \).

Thus, the critical points are \( x = \frac{8}{5} \) and \( x = 0 \).

Step 4: Use the First Derivative Test

Examine the sign of \( f'(x) \) around the critical points \( x = \frac{8}{5} \) and \( x = 0 \).

  • For \( x < 0 \), choose \( x = -1 \): \[ f'(-1) = \frac{5}{3}(-1)^{\frac{2}{3}} - \frac{8}{3}(-1)^{-\frac{1}{3}} = \frac{5}{3} - \frac{8}{3}(-1) = \frac{5}{3} + \frac{8}{3} = \frac{13}{3} > 0 \]

  • For \( 0 < x < \frac{8}{5} \), choose \( x = 1 \): \[ f'(1) = \frac{5}{3}(1)^{\frac{2}{3}} - \frac{8}{3}(1)^{-\frac{1}{3}} = \frac{5}{3} - \frac{8}{3} = -\frac{3}{3} = -1 < 0 \]

  • For \( x > \frac{8}{5} \), choose \( x = 2 \): \[ f'(2) = \frac{5}{3}(2)^{\frac{2}{3}} - \frac{8}{3}(2)^{-\frac{1}{3}} \] Approximating: \[ \approx \frac{5}{3}(1.5874) - \frac{8}{3}(0.7937) \approx \frac{5 \times 1.5874}{3} - \frac{8 \times 0.7937}{3} \approx 2.6457 - 2.1163 = 0.5294 > 0 \]

From the sign changes:

  • \( x = 0 \) is a local maximum.
  • \( x = \frac{8}{5} \) is a local minimum.
Step 5: Identify Absolute Maximum and Minimum

Evaluate \( f(x) \) at the critical points and endpoints of the interval \([-4, 4]\).

  • \( f(-4) = (-4)^{\frac{2}{3}}(-4-4) = 4 \times (-8) = -32 \)
  • \( f(0) = 0^{\frac{2}{3}}(0-4) = 0 \)
  • \( f\left(\frac{8}{5}\right) = \left(\frac{8}{5}\right)^{\frac{2}{3}}\left(\frac{8}{5} - 4\right) \) \[ \approx 1.5157 \times \left(\frac{8}{5} - \frac{20}{5}\right) = 1.5157 \times \left(-\frac{12}{5}\right) \approx -3.6377 \]
  • \( f(4) = 4^{\frac{2}{3}}(4-4) = 0 \)

The absolute maximum value is \( 0 \) at \( x = 0 \) and \( x = 4 \), and the absolute minimum value is \(-32\) at \( x = -4 \).

Final Answer

  • Critical points: \(\boxed{x = 0, \frac{8}{5}}\)
  • Local maximum: \(\boxed{x = 0}\)
  • Local minimum: \(\boxed{x = \frac{8}{5}}\)
  • Absolute maximum: \(\boxed{f(x) = 0}\) at \( x = 0 \) and \( x = 4 \)
  • Absolute minimum: \(\boxed{f(x) = -32}\) at \( x = -4 \)
Was this solution helpful?
failed
Unhelpful
failed
Helpful