Determine the value of \( x \) in the hydrate \(\mathrm{CuSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\) given that the mass of the sample decreases by \(18\%\) upon heating.
Define the initial and final masses.
Let the initial mass of the hydrate be \( m \). After heating, the mass decreases by \(18\%\), so the final mass is \( 0.82m \).
Express the mass of the hydrate and the anhydrous compound.
The mass of the hydrate is \( m = M_{\mathrm{CuSO}_{4}} + xM_{\mathrm{H}_{2} \mathrm{O}} \), where \( M_{\mathrm{CuSO}_{4}} \) is the molar mass of \(\mathrm{CuSO}_{4}\) and \( M_{\mathrm{H}_{2} \mathrm{O}} \) is the molar mass of water.
Calculate the molar masses.
The molar mass of \(\mathrm{CuSO}_{4}\) is \( 63.55 + 32.07 + 4 \times 16.00 = 159.62 \, \text{g/mol} \).
The molar mass of \(\mathrm{H}_{2} \mathrm{O}\) is \( 2 \times 1.01 + 16.00 = 18.02 \, \text{g/mol} \).
Set up the equation for the mass decrease.
The mass of the anhydrous \(\mathrm{CuSO}_{4}\) is \( 0.82m \).
Thus, \( 0.82m = M_{\mathrm{CuSO}_{4}} \).
Substituting \( m = M_{\mathrm{CuSO}_{4}} + xM_{\mathrm{H}_{2} \mathrm{O}} \):
\( 0.82(M_{\mathrm{CuSO}_{4}} + xM_{\mathrm{H}_{2} \mathrm{O}}) = M_{\mathrm{CuSO}_{4}} \).
Solve for \( x \).
Rearrange the equation:
\( 0.82M_{\mathrm{CuSO}_{4}} + 0.82xM_{\mathrm{H}_{2} \mathrm{O}} = M_{\mathrm{CuSO}_{4}} \)
\( 0.82xM_{\mathrm{H}_{2} \mathrm{O}} = M_{\mathrm{CuSO}_{4}} - 0.82M_{\mathrm{CuSO}_{4}} \)
\( 0.82xM_{\mathrm{H}_{2} \mathrm{O}} = 0.18M_{\mathrm{CuSO}_{4}} \)
\( x = \frac{0.18M_{\mathrm{CuSO}_{4}}}{0.82M_{\mathrm{H}_{2} \mathrm{O}}} \)
Substitute the molar masses:
\( x = \frac{0.18 \times 159.62}{0.82 \times 18.02} \)
\( x \approx 1.98 \)
Since \( x \) must be an integer, we round to the nearest whole number:
\( x = 2 \).
\(\boxed{x = 2}\)
\(\boxed{x = 2}\)