Questions: In Exercises 11 to 14, find the indefinite integral using the substitution (x=2 tan theta). [ int frac2 x^2(4+x^2)^2 d x ]

In Exercises 11 to 14, find the indefinite integral using the substitution (x=2 tan theta).
[
int frac2 x^2(4+x^2)^2 d x
]
Transcript text: In Exercises 11 to 14, find the indefinite integral using the substitution $x=2 \tan \theta$. \[ \int \frac{2 x^{2}}{\left(4+x^{2}\right)^{2}} d x \]
failed

Solution

failed
failed

Solution Steps

To solve the integral \(\int \frac{2 x^{2}}{\left(4+x^{2}\right)^{2}} d x\) using the substitution \(x = 2 \tan \theta\), follow these steps:

  1. Substitute \(x = 2 \tan \theta\), which implies \(dx = 2 \sec^2 \theta \, d\theta\).
  2. Replace \(x\) and \(dx\) in the integral with the expressions in terms of \(\theta\).
  3. Simplify the integral using trigonometric identities.
  4. Integrate with respect to \(\theta\).
  5. Convert back to \(x\) using the inverse substitution \(\theta = \tan^{-1}(x/2)\).
Step 1: Substitution

We start with the integral

\[ \int \frac{2 x^{2}}{(4+x^{2})^{2}} \, dx \]

Using the substitution \(x = 2 \tan \theta\), we find that

\[ dx = 2 \sec^2 \theta \, d\theta \]

Step 2: Transform the Integral

Substituting \(x\) and \(dx\) into the integral, we have:

\[ \int \frac{2 (2 \tan \theta)^{2}}{(4 + (2 \tan \theta)^{2})^{2}} \cdot 2 \sec^2 \theta \, d\theta \]

This simplifies to:

\[ \int \frac{16 \tan^{2} \theta \sec^{2} \theta}{(4 \tan^{2} \theta + 4)^{2}} \, d\theta \]

Step 3: Simplification

The expression simplifies further to:

\[ \int \sin^{2} \theta \, d\theta \]

Step 4: Integration

Integrating \(\sin^{2} \theta\) gives:

\[ \frac{\theta}{2} - \frac{\sin \theta \cos \theta}{2} + C \]

Step 5: Back Substitution

Substituting back \(\theta = \tan^{-1} \left(\frac{x}{2}\right)\):

\[ \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) - \frac{\sin \left(\tan^{-1} \left(\frac{x}{2}\right)\right) \cos \left(\tan^{-1} \left(\frac{x}{2}\right)\right)}{2} + C \]

Using the identity \(\sin(\tan^{-1}(u)) = \frac{u}{\sqrt{1+u^2}}\) and \(\cos(\tan^{-1}(u)) = \frac{1}{\sqrt{1+u^2}}\), we find:

\[ \sin \left(\tan^{-1} \left(\frac{x}{2}\right)\right) = \frac{\frac{x}{2}}{\sqrt{1+\left(\frac{x}{2}\right)^{2}}} = \frac{x}{\sqrt{x^{2}+4}} \]

\[ \cos \left(\tan^{-1} \left(\frac{x}{2}\right)\right) = \frac{2}{\sqrt{x^{2}+4}} \]

Thus, the integral evaluates to:

\[ -\frac{x}{4 \left(\frac{x^{2}}{4} + 1\right)} + \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) + C \]

Final Answer

The final result of the indefinite integral is:

\[ \boxed{-\frac{x}{4 \left(\frac{x^{2}}{4} + 1\right)} + \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) + C} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful