Questions: PL(n) = (sum pn q0) / (sum p0 qo) * 100 P = R[(1 + 1)^n - 1] / [r(1 + 1)^n] PP(n) = (sum pn qn) / (sum po qn) * 100 QL(n) = (sum po qn) / (sum po qo) * 100 QP(n) = (sum pn qn) / (sum pn qo) * 100 V = (sum pn qn) / (sum po q0) * 100

PL(n) = (sum pn q0) / (sum p0 qo) * 100

P = R[(1 + 1)^n - 1] / [r(1 + 1)^n]

PP(n) = (sum pn qn) / (sum po qn) * 100

QL(n) = (sum po qn) / (sum po qo) * 100

QP(n) = (sum pn qn) / (sum pn qo) * 100

V = (sum pn qn) / (sum po q0) * 100
Transcript text: $P_{L}(n)=\frac{\sum p_{n} q_{0}}{\sum p_{0} q_{o}} \times 100$ $P=R\left[\frac{(1+1)^{n}-1}{r(1+1)^{n}}\right]$ $P_{P}(n)=\frac{\sum p_{n} q_{n}}{\sum p_{o} q_{n}} \times 100$ $Q_{L}(n)=\frac{\sum p_{o} q_{n}}{\sum p_{o} q_{o}} \times 100$ $Q_{P}(n)=\frac{\sum p_{n} q_{n}}{\sum p_{n} q_{o}} \times 100$ $V=\frac{\sum p_{n} q_{n}}{\sum p_{o} q_{0}} \times 100$
failed

Solution

failed
failed

Solution Steps

To solve the given mathematical expressions, we need to break down each formula and compute the required values using Python. Let's focus on the first three expressions:

  1. \( P_{L}(n) = \frac{\sum p_{n} q_{0}}{\sum p_{0} q_{0}} \times 100 \)
  2. \( P = R\left[\frac{(1+1)^{n}-1}{r(1+1)^{n}}\right] \)
  3. \( P_{P}(n) = \frac{\sum p_{n} q_{n}}{\sum p_{0} q_{n}} \times 100 \)
Solution Approach
  1. For \( P_{L}(n) \), calculate the sum of \( p_{n} q_{0} \) and \( p_{0} q_{0} \), then divide and multiply by 100.
  2. For \( P \), use the given formula to compute the value based on \( R \), \( r \), and \( n \).
  3. For \( P_{P}(n) \), calculate the sum of \( p_{n} q_{n} \) and \( p_{0} q_{n} \), then divide and multiply by 100.
Step 1: Calculate \( P_L(n) \)

To compute \( P_L(n) \), we use the formula:

\[ P_L(n) = \frac{\sum p_n q_0}{\sum p_0 q_0} \times 100 \]

Given the values:

  • \( \sum p_n q_0 = 50 \)
  • \( \sum p_0 q_0 = 122 \)

We find:

\[ P_L(n) = \frac{50}{122} \times 100 \approx 40.9836 \]

Step 2: Calculate \( P \)

Using the formula for \( P \):

\[ P = R \left[ \frac{(1+1)^{n}-1}{r(1+1)^{n}} \right] \]

Substituting the values:

  • \( R = 100 \)
  • \( r = 0.05 \)
  • \( n = 5 \)

We calculate:

\[ P = 100 \left[ \frac{(2)^{5}-1}{0.05 \cdot (2)^{5}} \right] = 100 \left[ \frac{32-1}{0.05 \cdot 32} \right] = 100 \left[ \frac{31}{1.6} \right] = 1937.5 \]

Step 3: Calculate \( P_P(n) \)

For \( P_P(n) \), we use the formula:

\[ P_P(n) = \frac{\sum p_n q_n}{\sum p_0 q_n} \times 100 \]

With the values:

  • \( \sum p_n q_n = 68 \)
  • \( \sum p_0 q_n = 167 \)

We find:

\[ P_P(n) = \frac{68}{167} \times 100 \approx 40.7186 \]

Final Answer

The results are:

  • \( P_L(n) \approx 40.9836 \)
  • \( P = 1937.5 \)
  • \( P_P(n) \approx 40.7186 \)

Thus, the final answers are:

\[ \boxed{P_L(n) \approx 40.9836} \] \[ \boxed{P = 1937.5} \] \[ \boxed{P_P(n) \approx 40.7186} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful