We need to calculate the wavelength of light emitted or absorbed when an electron transitions between the \( n=2 \) and \( n=3 \) energy levels in a hydrogen atom. This involves using the Rydberg formula for hydrogen:
\[
\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)
\]
where \( \lambda \) is the wavelength, \( R_H = 1.097 \times 10^7 \, \text{m}^{-1} \) is the Rydberg constant, \( n_1 \) is the lower energy level, and \( n_2 \) is the higher energy level.
For the transition from \( n=2 \) to \( n=3 \):
- \( n_1 = 2 \)
- \( n_2 = 3 \)
Substitute the values into the Rydberg formula:
\[
\frac{1}{\lambda} = 1.097 \times 10^7 \left( \frac{1}{2^2} - \frac{1}{3^2} \right)
\]
Calculate the terms inside the parentheses:
\[
\frac{1}{2^2} = \frac{1}{4} = 0.25
\]
\[
\frac{1}{3^2} = \frac{1}{9} \approx 0.1111
\]
Subtract these values:
\[
0.25 - 0.1111 = 0.1389
\]
Now, substitute back into the formula:
\[
\frac{1}{\lambda} = 1.097 \times 10^7 \times 0.1389
\]
Calculate the right-hand side:
\[
\frac{1}{\lambda} \approx 1.524 \times 10^6 \, \text{m}^{-1}
\]
To find \( \lambda \), take the reciprocal:
\[
\lambda = \frac{1}{1.524 \times 10^6} \approx 6.562 \times 10^{-7} \, \text{m}
\]
Convert meters to nanometers (1 m = \( 10^9 \) nm):
\[
\lambda \approx 6.562 \times 10^{-7} \times 10^9 = 656.2 \, \text{nm}
\]
Round to the nearest nanometer:
\[
\lambda \approx 656 \, \text{nm}
\]
\[
\boxed{656 \, \text{nm}}
\]