The balanced chemical equation for the combustion of octane is:
\[
2 \, \text{C}_8\text{H}_{18} + 25 \, \text{O}_2 \rightarrow 16 \, \text{CO}_2 + 18 \, \text{H}_2\text{O}
\]
Molar mass of octane (\(\text{C}_8\text{H}_{18}\)):
\[
(8 \times 12.01) + (18 \times 1.008) = 114.22 \, \text{g/mol}
\]
Molar mass of water (\(\text{H}_2\text{O}\)):
\[
(2 \times 1.008) + 16.00 = 18.016 \, \text{g/mol}
\]
Moles of octane:
\[
\frac{2.28 \, \text{g}}{114.22 \, \text{g/mol}} = 0.01996 \, \text{mol}
\]
Moles of oxygen:
\[
\frac{15.5 \, \text{g}}{32.00 \, \text{g/mol}} = 0.4844 \, \text{mol}
\]
From the balanced equation, 2 moles of octane react with 25 moles of oxygen. Therefore, the ratio is:
\[
\frac{0.01996 \, \text{mol C}_8\text{H}_{18}}{2} = 0.00998
\]
\[
\frac{0.4844 \, \text{mol O}_2}{25} = 0.01938
\]
Since \(0.00998 < 0.01938\), octane is the limiting reactant.
From the balanced equation, 2 moles of octane produce 18 moles of water. Therefore, the moles of water produced are:
\[
0.01996 \, \text{mol C}_8\text{H}_{18} \times \frac{18 \, \text{mol H}_2\text{O}}{2 \, \text{mol C}_8\text{H}_{18}} = 0.1796 \, \text{mol H}_2\text{O}
\]
The theoretical mass of water is:
\[
0.1796 \, \text{mol} \times 18.016 \, \text{g/mol} = 3.236 \, \text{g}
\]
The percent yield is given by:
\[
\text{Percent Yield} = \left(\frac{\text{Actual Yield}}{\text{Theoretical Yield}}\right) \times 100\%
\]
\[
\text{Percent Yield} = \left(\frac{1.26 \, \text{g}}{3.236 \, \text{g}}\right) \times 100\% = 38.94\%
\]