The mass of a radioactive substance that decays over time can be modeled using the exponential decay formula:
\[
m(t) = m_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{T}}
\]
where:
- \( m(t) \) is the mass at time \( t \),
- \( m_0 \) is the initial mass,
- \( T \) is the half-life of the substance.
For Strontium-90, \( m_0 = 225 \) mg and \( T = 28 \) days. Thus, the expression for the mass of the sample after \( t \) days is:
\[
m(t) = 225 \cdot \left(\frac{1}{2}\right)^{\frac{t}{28}}
\]
To find the mass after 70 days, substitute \( t = 70 \) into the expression:
\[
m(70) = 225 \cdot \left(\frac{1}{2}\right)^{\frac{70}{28}}
\]
Calculate the exponent:
\[
\frac{70}{28} = 2.5
\]
Now calculate the mass:
\[
m(70) = 225 \cdot \left(\frac{1}{2}\right)^{2.5} = 225 \cdot 0.1768 \approx 39.780
\]
To find the time \( t \) when the mass is 3 mg, set \( m(t) = 3 \) and solve for \( t \):
\[
3 = 225 \cdot \left(\frac{1}{2}\right)^{\frac{t}{28}}
\]
Divide both sides by 225:
\[
\frac{3}{225} = \left(\frac{1}{2}\right)^{\frac{t}{28}}
\]
Simplify:
\[
0.0133 = \left(\frac{1}{2}\right)^{\frac{t}{28}}
\]
Take the logarithm of both sides:
\[
\log(0.0133) = \frac{t}{28} \cdot \log\left(\frac{1}{2}\right)
\]
Solve for \( t \):
\[
t = 28 \cdot \frac{\log(0.0133)}{\log(0.5)}
\]
Calculate:
\[
t \approx 28 \cdot \frac{-1.8761}{-0.3010} \approx 174.444
\]
- a) Expression for mass: \(\boxed{m(t) = 225 \cdot \left(\frac{1}{2}\right)^{\frac{t}{28}}}\)
- b) Mass after 70 days: \(\boxed{39.780 \, \text{mg}}\)
- c) Time for mass to reach 3 mg: \(\boxed{174.444 \, \text{days}}\)