To find the demand function \( D(x) \), we need to integrate the marginal-demand function \( D'(x) \). Given that \( D(3) = 11,000 \), we can use this initial condition to solve for the constant of integration after performing the integration.
We are given the marginal-demand function \( D'(x) = \frac{-1400x}{\sqrt{25-x^2}} \) and need to find the demand function \( D(x) \). We also know that \( D(3) = 11,000 \).
To find the demand function \( D(x) \), we need to integrate the marginal-demand function \( D'(x) \).
\[
D(x) = \int D'(x) \, dx = \int \frac{-1400x}{\sqrt{25-x^2}} \, dx
\]
Let \( u = 25 - x^2 \), then \( du = -2x \, dx \) or \( -\frac{1}{2} du = x \, dx \).
Substitute into the integral:
\[
D(x) = \int \frac{-1400x}{\sqrt{25-x^2}} \, dx = \int \frac{-1400}{\sqrt{u}} \left(-\frac{1}{2}\right) \, du
\]
\[
= 700 \int u^{-\frac{1}{2}} \, du
\]
The integral of \( u^{-\frac{1}{2}} \) is \( 2u^{\frac{1}{2}} \).
\[
D(x) = 700 \cdot 2u^{\frac{1}{2}} + C = 1400 \sqrt{u} + C
\]
Substitute back \( u = 25 - x^2 \):
\[
D(x) = 1400 \sqrt{25 - x^2} + C
\]
We know \( D(3) = 11,000 \).
\[
11,000 = 1400 \sqrt{25 - 3^2} + C
\]
\[
11,000 = 1400 \sqrt{25 - 9} + C
\]
\[
11,000 = 1400 \sqrt{16} + C
\]
\[
11,000 = 1400 \times 4 + C
\]
\[
11,000 = 5600 + C
\]
\[
C = 11,000 - 5600 = 5400
\]
The demand function is:
\[
\boxed{D(x) = 1400 \sqrt{25 - x^2} + 5400}
\]