Questions: Evaluate the line integral, where C is the given curve. ∫C xy^4 ds, C is the right half of the circle x^2+y^2=9 oriented counterclockwise
Transcript text: Evaluate the line integral, where $C$ is the given curve.
$\int_{C} x y^{4} d s, C$ is the right half of the circle $x^{2}+y^{2}=9$ oriented counterclockwise
Solution
Solution Steps
Step 1: Parameterization of the Curve
The right half of the circle defined by \( x^2 + y^2 = 9 \) can be parameterized using the variable \( t \) as follows:
\[
x = 3 \cos(t), \quad y = 3 \sin(t)
\]
for \( t \) in the interval \( [0, \pi] \).
Step 2: Calculation of the Differential Arc Length
To find the differential arc length \( ds \), we compute the derivatives of \( x \) and \( y \):
\[
\frac{dx}{dt} = -3 \sin(t), \quad \frac{dy}{dt} = 3 \cos(t)
\]
Then, we calculate \( ds \):
\[
ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(-3 \sin(t))^2 + (3 \cos(t))^2} = \sqrt{9 \sin^2(t) + 9 \cos^2(t)} = 3
\]
Step 3: Expression of the Integrand
The integrand for the line integral is given by \( x y^4 \):
\[
x y^4 = (3 \cos(t))(3 \sin(t))^4 = 3 \cos(t) \cdot 243 \sin^4(t) = 729 \sin^4(t) \cos(t)
\]
Step 4: Setting Up the Integral
Substituting the parameterization and \( ds \) into the integral, we have:
\[
\int_{C} x y^4 \, ds = \int_{0}^{\pi} 729 \sin^4(t) \cos(t) \cdot 3 \, dt = 2187 \int_{0}^{\pi} \sin^4(t) \cos(t) \, dt
\]
Step 5: Evaluation of the Integral
The integral \( \int_{0}^{\pi} \sin^4(t) \cos(t) \, dt \) can be evaluated using the substitution \( u = \sin(t) \), which gives \( du = \cos(t) \, dt \). The limits change from \( t = 0 \) to \( t = \pi \) to \( u = 0 \) to \( u = 0 \). Thus, the integral evaluates to zero:
\[
\int_{0}^{\pi} \sin^4(t) \cos(t) \, dt = 0
\]
Final Answer
Combining all the steps, we find that the value of the line integral is:
\[
\boxed{0}
\]