Questions: Tabular representations for the functions (p1 q), and (r) are given below. Write (q(z)) and (r(z)) as transformations of (p(z)), (x) -1 0 1 2 3 (p(x)) -1 0 1 8 27 (x) -1 0 1 2 3 (q(x)) 0 1 2 9 28 (x) -3.5 -2.5 -1.5 -0.5 0.5 (r(x)) -1 0 1 8 27 Selodone OA (q(x)=p(x)+1), (r(x)=p(x-2.5)) OB (q(x)=p(x)-1), (r(x)=p(x+2.5)) OC (q(x)=p(x)-1), (r(x)=p(x-2.5)) OD (q(x)=p(x)+1), (r(x)=p(x+2.5))

Tabular representations for the functions (p1 q), and (r) are given below. Write (q(z)) and (r(z)) as transformations of (p(z)),
(x)  -1  0  1  2  3
(p(x))  -1  0  1  8  27

(x)  -1  0  1  2  3
(q(x))  0  1  2  9  28

(x)  -3.5  -2.5  -1.5  -0.5  0.5
(r(x))  -1  0  1  8  27

Selodone
OA (q(x)=p(x)+1), (r(x)=p(x-2.5))
OB (q(x)=p(x)-1), (r(x)=p(x+2.5))
OC (q(x)=p(x)-1), (r(x)=p(x-2.5))
OD (q(x)=p(x)+1), (r(x)=p(x+2.5))
Transcript text: Tabular representations for the functions $p_{1} q$, and $r$ are given below. Write $q(z)$ and $r(z)$ as transiormations of $p(z)$, \begin{tabular}{|c|c|c|c|c|c|} \hline$x$ & -1 & 0 & 1 & 2 & 3 \\ \hline$p(x)$ & -1 & 0 & 1 & 8 & 27 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|c|c|c|} \hline$x$ & -1 & 0 & 1 & 2 & 3 \\ \hline$q(x)$ & 0 & 1 & 2 & 9 & 28 \\ \hline \end{tabular} \begin{tabular}{|c|c|c|c|c|c|} \hline$x$ & -3.5 & -2.5 & -1.5 & -0.5 & 0.5 \\ \hline$r(x)$ & -1 & 0 & 1 & 8 & 27 \\ \hline \end{tabular} \[ \begin{array}{l} \text { Selodone } \\ \text { OA } q(x)=p(x)+1, r(x)=p(x-2.5) \\ \text { OB } q(x)=p(x)-1, r(x)=p(x+2.5) \\ \text { OC } q(x)=p(x)-1, r(x)=p(x-2.5) \\ \text { OD } q(x)=p(x)+1, r(x)=p(x+2.5) \end{array} \]
failed

Solution

failed
failed

Solution Steps

Step 1: Analyze the relationship between \( p(x) \) and \( q(x) \)

We compare the values of \( p(x) \) and \( q(x) \) from the tables:

\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -1 & 0 & 1 & 2 & 3 \\ \hline p(x) & -1 & 0 & 1 & 8 & 27 \\ \hline q(x) & 0 & 1 & 2 & 9 & 28 \\ \hline \end{array} \]

For each \( x \), \( q(x) = p(x) + 1 \). For example:

  • At \( x = -1 \), \( p(-1) = -1 \) and \( q(-1) = 0 \), so \( q(-1) = p(-1) + 1 \).
  • At \( x = 0 \), \( p(0) = 0 \) and \( q(0) = 1 \), so \( q(0) = p(0) + 1 \).

Thus, \( q(x) = p(x) + 1 \).


Step 2: Analyze the relationship between \( p(x) \) and \( r(x) \)

We compare the values of \( p(x) \) and \( r(x) \) from the tables:

\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -3.5 & -2.5 & -1.5 & -0.5 & 0.5 \\ \hline r(x) & -1 & 0 & 1 & 8 & 27 \\ \hline \end{array} \]

Notice that the values of \( r(x) \) match the values of \( p(x) \) when \( x \) is shifted by \( +2.5 \). For example:

  • At \( x = -3.5 \), \( r(-3.5) = -1 \), which matches \( p(-3.5 + 2.5) = p(-1) = -1 \).
  • At \( x = -2.5 \), \( r(-2.5) = 0 \), which matches \( p(-2.5 + 2.5) = p(0) = 0 \).

Thus, \( r(x) = p(x + 2.5) \).


Step 3: Match the transformations with the given options

From Step 1 and Step 2, we have:

  • \( q(x) = p(x) + 1 \),
  • \( r(x) = p(x + 2.5) \).

Comparing these with the options:

  • OA: \( q(x) = p(x) + 1 \), \( r(x) = p(x - 2.5) \) → Incorrect for \( r(x) \).
  • OB: \( q(x) = p(x) - 1 \), \( r(x) = p(x + 2.5) \) → Incorrect for \( q(x) \).
  • OC: \( q(x) = p(x) - 1 \), \( r(x) = p(x - 2.5) \) → Incorrect for both.
  • OD: \( q(x) = p(x) + 1 \), \( r(x) = p(x + 2.5) \) → Correct for both.

Final Answer

The correct option is OD. Thus: \[ \boxed{\text{OD}} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful