Questions: Question 6 Étant donné les plans π₁ et π₂ définis comme suit : π₁: x + y - 11z + 3 = 0 π₂: 2x + 2y - z + 13 = 0 a) Déterminez l'angle dièdre entre ces deux plans. b) Donnez l'équation de la droite d'intersection de ces deux plans. ( /9 points)

Question 6  
Étant donné les plans π₁ et π₂ définis comme suit :  
π₁: x + y - 11z + 3 = 0  
π₂: 2x + 2y - z + 13 = 0  

a) Déterminez l'angle dièdre entre ces deux plans.  
b) Donnez l'équation de la droite d'intersection de ces deux plans. ( /9 points)
Transcript text: Question 6 Étant donné les plans $\pi_{1}$ et $\pi_{2}$ définis comme syit : \[ \begin{array}{l} \pi_{1}: x+y-11 z+3=0 \\ \pi_{2}: 2 x+2 y-z+13=0 \end{array} \] a) Déterminez l'angle dièdre entre ces deux plans. b) Donnez l'équation de la droite d'intersection de ces deux plans. ( /9 points)
failed

Solution

failed
failed

Determine the dihedral angle between the two planes.

Calculate the normal vectors of the planes.

The normal vector of plane \(\pi_1\) is \(\vec{n_1} = \begin{pmatrix} 1 \\ 1 \\ -11 \end{pmatrix}\), and the normal vector of plane \(\pi_2\) is \(\vec{n_2} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}\).

Calculate the dot product of the normal vectors.

\(\vec{n_1} \cdot \vec{n_2} = (1)(2) + (1)(2) + (-11)(-1) = 2 + 2 + 11 = 15\)

Calculate the magnitudes of the normal vectors.

\(\|\vec{n_1}\| = \sqrt{1^2 + 1^2 + (-11)^2} = \sqrt{1 + 1 + 121} = \sqrt{123}\)
\(\|\vec{n_2}\| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3\)

Calculate the cosine of the angle between the normal vectors.

\(\cos \theta = \frac{15}{3\sqrt{123}} = \frac{5}{\sqrt{123}}\)

Find the dihedral angle using the inverse cosine.

\(\theta = \arccos\left(\frac{5}{\sqrt{123}}\right)\)

The dihedral angle between the two planes is approximately \(\boxed{63.20^\circ}\).

Give the equation of the line of intersection of these two planes.

Find a point on the line by setting \(x = 0\).

If \(x = 0\), the equations become:
\[ \begin{array}{l} y - 11z + 3 = 0 \\ 2y - z + 13 = 0 \end{array} \]
From the first equation, \(y = 11z - 3\). Substituting this into the second equation:
\[ 2(11z - 3) - z + 13 = 0 \\ 22z - 6 - z + 13 = 0 \\ 21z + 7 = 0 \\ 21z = -7 \\ z = -\frac{1}{3} \]
Now, we can find \(y\):
\[ y = 11\left(-\frac{1}{3}\right) - 3 = -\frac{11}{3} - \frac{9}{3} = -\frac{20}{3} \]
So, a point on the line is \(\left(0, -\frac{20}{3}, -\frac{1}{3}\right)\).

Find the direction vector of the line using the cross product of the normal vectors.

\(\vec{v} = \vec{n_1} \times \vec{n_2} = \begin{pmatrix} 1 \\ 1 \\ -11 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} (1)(-1) - (-11)(2) \\ (-11)(2) - (1)(-1) \\ (1)(2) - (1)(2) \end{pmatrix} = \begin{pmatrix} -1 + 22 \\ -22 + 1 \\ 2 - 2 \end{pmatrix} = \begin{pmatrix} 21 \\ -21 \\ 0 \end{pmatrix}\)
We can simplify the direction vector by dividing by 21: \(\vec{v} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}\).

Write the parametric equations of the line.

The equation of the line is:
\[ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{20}{3} \\ -\frac{1}{3} \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \]
So, the parametric equations of the line are:
\[ \begin{array}{l} x = t \\ y = -\frac{20}{3} - t \\ z = -\frac{1}{3} \end{array} \]

The equation of the line of intersection is \(\boxed{\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{20}{3} \\ -\frac{1}{3} \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}}\).

The dihedral angle between the two planes is approximately \(\boxed{63.20^\circ}\).
The equation of the line of intersection is \(\boxed{\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{20}{3} \\ -\frac{1}{3} \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}}\).

Was this solution helpful?
failed
Unhelpful
failed
Helpful