Questions: b. What is the de Broglie wavelength of the electron striking the Cu surface?
Transcript text: b. What is the de Broglie wavelength of the electron striking the Cu surface?
Solution
Solution Steps
Step 1: Understanding the de Broglie wavelength formula
The de Broglie wavelength (\(\lambda\)) of a particle is given by the formula:
\[
\lambda = \frac{h}{p}
\]
where \(h\) is Planck's constant (\(6.626 \times 10^{-34} \, \text{Js}\)) and \(p\) is the momentum of the particle.
Step 2: Calculating the momentum of the electron
The momentum \(p\) of an electron can be calculated using its mass \(m\) and velocity \(v\):
\[
p = mv
\]
The mass of an electron \(m\) is \(9.109 \times 10^{-31} \, \text{kg}\). If the velocity \(v\) of the electron is given, we can directly calculate the momentum. If not, we need to find the velocity using the kinetic energy.
Step 3: Finding the velocity of the electron
If the kinetic energy \(E_k\) of the electron is known, we can find the velocity using the relation:
\[
E_k = \frac{1}{2}mv^2
\]
Solving for \(v\):
\[
v = \sqrt{\frac{2E_k}{m}}
\]
Step 4: Substituting values to find the de Broglie wavelength
Assuming we have the kinetic energy \(E_k\) of the electron, we can find the velocity and then the momentum. Finally, we substitute the momentum into the de Broglie wavelength formula.
For example, if the kinetic energy \(E_k\) of the electron is \(1.602 \times 10^{-19} \, \text{J}\) (which corresponds to 1 eV):
\[
v = \sqrt{\frac{2 \times 1.602 \times 10^{-19} \, \text{J}}{9.109 \times 10^{-31} \, \text{kg}}} = 5.931 \times 10^5 \, \text{m/s}
\]
\[
p = (9.109 \times 10^{-31} \, \text{kg}) \times (5.931 \times 10^5 \, \text{m/s}) = 5.400 \times 10^{-25} \, \text{kg m/s}
\]
\[
\lambda = \frac{6.626 \times 10^{-34} \, \text{Js}}{5.400 \times 10^{-25} \, \text{kg m/s}} = 1.227 \times 10^{-9} \, \text{m} = 1.227 \, \text{nm}
\]