Questions: Find the work done by F=(x^2+y)i+(y^2+x)j+ze^2k over the following paths from (5,0,0) to (5,0,5). a. The line segment x=5, y=0,0 ≤ z ≤ 5 b. The helix r(t)=(5 cos t) i+(5 sin t) j+(5t/2π) k, 0 ≤ t ≤ 2π c. The x-axis from (5,0,0) to (0,0,0) followed by the line z=x, y=0 from (0,0,0) to (5,0,5) a. Find a scalar potential function f for F, such that F=∇f. A. x^3+xy+y^3+ze^z-e^z+C B. (1/3)x^3+xy+(1/3)y^3+z-e^z+C C. (1/3)x^3+x^2y^2+(1/3)y^3+e^z+C D. (1/3)x^3+xy+(1/3)y^3+ze^z-e^z+C E. The vector field F is not conservative.

Find the work done by F=(x^2+y)i+(y^2+x)j+ze^2k over the following paths from (5,0,0) to (5,0,5).
a. The line segment x=5, y=0,0 ≤ z ≤ 5
b. The helix r(t)=(5 cos t) i+(5 sin t) j+(5t/2π) k, 0 ≤ t ≤ 2π
c. The x-axis from (5,0,0) to (0,0,0) followed by the line z=x, y=0 from (0,0,0) to (5,0,5)
a. Find a scalar potential function f for F, such that F=∇f.
A. x^3+xy+y^3+ze^z-e^z+C
B. (1/3)x^3+xy+(1/3)y^3+z-e^z+C
C. (1/3)x^3+x^2y^2+(1/3)y^3+e^z+C
D. (1/3)x^3+xy+(1/3)y^3+ze^z-e^z+C
E. The vector field F is not conservative.
Transcript text: Find the work done by $\mathbf{F}=\left(\mathrm{x}^{2}+\mathrm{y}\right) \mathbf{i}+\left(\mathrm{y}^{2}+\mathrm{x}\right) \mathbf{j}+\mathrm{ze}^{2} \mathbf{k}$ over the following paths from $(5,0,0)$ to $(5,0,5)$. a. The line segment $x=5, y=0,0 \leq z \leq 5$ b. The helix $r(t)=(5 \cos t) i+(5 \sin t) j+\left(\frac{5 t}{2 \pi}\right) k, 0 \leq t \leq 2 \pi$ c. The $x$-axis from $(5,0,0)$ to $(0,0,0)$ followed by the line $z=x, y=0$ from $(0,0,0)$ to $(5,0,5)$ a. Find a scalar potential function $f$ for $F$, such that $F=\nabla f$. A. $x^{3}+x y+y^{3}+z e^{z}-e^{z}+C$ B. $\frac{1}{3} x^{3}+x y+\frac{1}{3} y^{3}+z-e^{z}+C$ C. $\frac{1}{3} x^{3}+x^{2} y^{2}+\frac{1}{3} y^{3}+e^{z}+C$ D. $\frac{1}{3} x^{3}+x y+\frac{1}{3} y^{3}+z e^{z}-e^{z}+C$ E. The vector field $\mathbf{F}$ is not conservative.
failed

Solution

failed
failed

Solution Steps

Step 1: Identify the Scalar Potential Function

To find the scalar potential function \( f \) for \( \mathbf{F} \), we need to ensure that \( \mathbf{F} = \nabla f \). Given \( \mathbf{F} = (x^2 + y) \mathbf{i} + (y^2 + x) \mathbf{j} + ze^z \mathbf{k} \), we need to find \( f \) such that: \[ \frac{\partial f}{\partial x} = x^2 + y \] \[ \frac{\partial f}{\partial y} = y^2 + x \] \[ \frac{\partial f}{\partial z} = ze^z \]

Step 2: Integrate to Find \( f \)

Integrate \( \frac{\partial f}{\partial x} = x^2 + y \) with respect to \( x \): \[ f(x, y, z) = \int (x^2 + y) \, dx = \frac{1}{3}x^3 + xy + g(y, z) \]

Next, differentiate \( f \) with respect to \( y \) and set it equal to \( \frac{\partial f}{\partial y} \): \[ \frac{\partial}{\partial y} \left( \frac{1}{3}x^3 + xy + g(y, z) \right) = y^2 + x \] \[ x + \frac{\partial g}{\partial y} = y^2 + x \] \[ \frac{\partial g}{\partial y} = y^2 \] Integrate \( \frac{\partial g}{\partial y} = y^2 \) with respect to \( y \): \[ g(y, z) = \frac{1}{3}y^3 + h(z) \]

Now, differentiate \( f \) with respect to \( z \) and set it equal to \( \frac{\partial f}{\partial z} \): \[ \frac{\partial}{\partial z} \left( \frac{1}{3}x^3 + xy + \frac{1}{3}y^3 + h(z) \right) = ze^z \] \[ \frac{dh}{dz} = ze^z \] Integrate \( \frac{dh}{dz} = ze^z \) with respect to \( z \): \[ h(z) = ze^z - e^z + C \]

Step 3: Combine Results to Form \( f \)

Combine all parts to form the scalar potential function \( f \): \[ f(x, y, z) = \frac{1}{3}x^3 + xy + \frac{1}{3}y^3 + ze^z - e^z + C \]

Final Answer

The scalar potential function \( f \) for \( \mathbf{F} \) is: \[ f(x, y, z) = \frac{1}{3}x^3 + xy + \frac{1}{3}y^3 + ze^z - e^z + C \] This corresponds to option D.

Was this solution helpful?
failed
Unhelpful
failed
Helpful