The value of \(f(x) = \operatorname{int}(kx)\) for \(k = 3\) and \(x = 1.3\) is \(f(x) = 3\).
To find the value of \(f(x) = \operatorname{int}(kx)\) for \(k = 3\) and \(x = 3.2\), we first calculate the product \(kx\).
\[kx = 3 \times 3.2 = 9.6\]
Next, we apply the integer part function \(\operatorname{int}(\cdot)\) to \(kx\), which involves taking the integer part of \(kx\), effectively discarding any fractional part.
For \(kx = 9.6\), the integer part is \(\operatorname{int}(9.6) = 9\).
The value of \(f(x) = \operatorname{int}(kx)\) for \(k = 3\) and \(x = 3.2\) is \(f(x) = 9\).
To find the value of \(f(x) = \operatorname{int}(kx)\) for \(k = 3\) and \(x = -1.7\), we first calculate the product \(kx\).
\[kx = 3 \times -1.7 = -5.1\]
Next, we apply the integer part function \(\operatorname{int}(\cdot)\) to \(kx\), which involves taking the integer part of \(kx\), effectively discarding any fractional part.
For \(kx = -5.1\), the integer part is \(\operatorname{int}(-5.1) = -5\).
The value of \(f(x) = \operatorname{int}(kx)\) for \(k = 3\) and \(x = -1.7\) is \(f(x) = -5\).