The equilibrium constant \( K_p \) for the reaction is given by:
\[
K_p = \frac{P_{\mathrm{HI}}^2}{P_{\mathrm{H_2S}}}
\]
Given:
- Partial pressure of \( \mathrm{H_2S} \) is 786.2 mmHg.
- Mass of \( \mathrm{I_2} \) is 1.68 g.
- Molar mass of \( \mathrm{I_2} \) is 253.80 g/mol.
- Volume of the flask is 1.00 L.
Calculate the initial moles of \( \mathrm{I_2} \):
\[
\text{moles of } \mathrm{I_2} = \frac{1.68 \, \text{g}}{253.80 \, \text{g/mol}} = 0.00662 \, \text{mol}
\]
Initial conditions:
\[
\begin{array}{c|c|c|c}
& \mathrm{H_2S} & \mathrm{I_2} & \mathrm{HI} \\
\hline
\text{Initial} & 786.2 \, \text{mmHg} & 0.00662 \, \text{mol} & 0 \\
\text{Change} & -x & -x & +2x \\
\text{Equilibrium} & 786.2 - x & 0.00662 - x & 2x \\
\end{array}
\]
At equilibrium:
\[
K_p = \frac{(2x)^2}{786.2 - x}
\]
Given \( K_p = 1.34 \times 10^{-5} \):
\[
1.34 \times 10^{-5} = \frac{4x^2}{786.2 - x}
\]
Assume \( x \) is small compared to 786.2:
\[
1.34 \times 10^{-5} \approx \frac{4x^2}{786.2}
\]
Solve for \( x \):
\[
4x^2 = 1.34 \times 10^{-5} \times 786.2
\]
\[
4x^2 = 0.01053
\]
\[
x^2 = 0.0026325
\]
\[
x = \sqrt{0.0026325} \approx 0.0513
\]
The partial pressure of \( \mathrm{HI} \) at equilibrium is:
\[
P_{\mathrm{HI}} = 2x = 2 \times 0.0513 = 0.1026 \, \text{atm}
\]
Convert to mmHg:
\[
P_{\mathrm{HI}} = 0.1026 \, \text{atm} \times 760 \, \text{mmHg/atm} = 77.976 \, \text{mmHg}
\]
To 3 significant digits:
\[
P_{\mathrm{HI}} = 7.80 \times 10^1 \, \text{mmHg}
\]
Thus, the partial pressure of HI at equilibrium is \( 7.80 \times 10^1 \) mmHg.