First, we need to calculate the initial concentration of \(\mathrm{PCl}_5\) in the reaction vessel. The initial moles of \(\mathrm{PCl}_5\) is 0.1915 mol, and the volume of the vessel is 3.15 L.
\[
[\mathrm{PCl}_5]_{\text{initial}} = \frac{0.1915 \, \text{mol}}{3.15 \, \text{L}} = 0.0608 \, \text{M}
\]
The equilibrium expression for the reaction is given by:
\[
K_c = \frac{[\mathrm{PCl}_3][\mathrm{Cl}_2]}{[\mathrm{PCl}_5]}
\]
Given \(K_c = 1.80\).
Let \(x\) be the change in concentration of \(\mathrm{PCl}_5\) that decomposes at equilibrium. Then, the changes in concentration are:
- \([\mathrm{PCl}_5] = 0.0608 - x\)
- \([\mathrm{PCl}_3] = x\)
- \([\mathrm{Cl}_2] = x\)
Substitute the equilibrium concentrations into the equilibrium expression:
\[
1.80 = \frac{x \cdot x}{0.0608 - x} = \frac{x^2}{0.0608 - x}
\]
Rearrange the equation to form a quadratic equation:
\[
1.80(0.0608 - x) = x^2
\]
\[
0.1094 - 1.80x = x^2
\]
\[
x^2 + 1.80x - 0.1094 = 0
\]
Use the quadratic formula to solve for \(x\):
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
where \(a = 1\), \(b = 1.80\), and \(c = -0.1094\).
\[
x = \frac{-1.80 \pm \sqrt{(1.80)^2 - 4 \cdot 1 \cdot (-0.1094)}}{2 \cdot 1}
\]
\[
x = \frac{-1.80 \pm \sqrt{3.24 + 0.4376}}{2}
\]
\[
x = \frac{-1.80 \pm \sqrt{3.6776}}{2}
\]
\[
x = \frac{-1.80 \pm 1.9172}{2}
\]
The positive root is:
\[
x = \frac{0.1172}{2} = 0.0586
\]
Now, calculate the equilibrium concentrations:
- \([\mathrm{PCl}_5] = 0.0608 - 0.0586 = 0.0022 \, \text{M}\)
- \([\mathrm{PCl}_3] = 0.0586 \, \text{M}\)
\[
\left[\mathrm{PCl}_{5}\right] = \boxed{0.0022 \, \text{M}}
\]
\[
\left[\mathrm{PCl}_{3}\right] = \boxed{0.0586 \, \text{M}}
\]