Questions: Find the PH of a 0.080 M HH2CO3 solution. For H2CO3, Ka1=4.3 × 10^-7 and Ka2=5.6 × 10^-11
Transcript text: Find the PH of a $0.080 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{CO}_{3}$ solution. For $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{K}_{a1}=4.3 \times 10^{-7}$ and $K_{a2}=5.6 \times 10^{-11}$
Solution
Solution Steps
Step 1: Understanding the Problem
We need to find the pH of a 0.080 M solution of carbonic acid (\(\mathrm{H}_2\mathrm{CO}_3\)). Carbonic acid is a diprotic acid, meaning it can donate two protons. We are given the first dissociation constant \(K_{a1} = 4.3 \times 10^{-7}\) and the second dissociation constant \(K_{a2} = 5.6 \times 10^{-11}\).
Step 2: Approximating the pH Using the First Dissociation
Since \(K_{a1} \gg K_{a2}\), the first dissociation will contribute most to the hydrogen ion concentration. The dissociation of \(\mathrm{H}_2\mathrm{CO}_3\) can be represented as:
\[
\mathrm{H}_2\mathrm{CO}_3 \rightleftharpoons \mathrm{H}^+ + \mathrm{HCO}_3^-
\]
The equilibrium expression is:
\[
K_{a1} = \frac{[\mathrm{H}^+][\mathrm{HCO}_3^-]}{[\mathrm{H}_2\mathrm{CO}_3]}
\]
Assuming \(x\) is the concentration of \(\mathrm{H}^+\) produced, we have:
\[
K_{a1} = \frac{x^2}{0.080 - x} \approx \frac{x^2}{0.080}
\]
Solving for \(x\):
\[
x^2 = K_{a1} \times 0.080 = 4.3 \times 10^{-7} \times 0.080
\]
\[
x^2 = 3.44 \times 10^{-8}
\]
\[
x = \sqrt{3.44 \times 10^{-8}} = 5.865 \times 10^{-5}
\]
Step 3: Calculating the pH
The pH is calculated using the concentration of \(\mathrm{H}^+\):
\[
\text{pH} = -\log_{10}(x) = -\log_{10}(5.865 \times 10^{-5})
\]
\[
\text{pH} \approx 4.232
\]