Using the quotient and chain rule, the derivative of \(\frac{A x^n}{(B x^m + C)^p}\) is calculated as:
\[\frac{d}{dx}\left(\frac{A x^n}{(B x^m + C)^p}\right) = ((A_0_x^{0-1})_((6_x^1 - 13)^3) - (A_x^0)_(p_(6_x^1 - 13)^{3-1} * 6_1_x^{1-1}))/((6*x^1 - 13)^3)^2\]
Step 2: Derivative of the power function parts
Using the power rule, the derivatives of \(\frac{D}{x^q}\) and \(-\frac{E}{x^r}\) are calculated as:
\[\frac{d}{dx}\left(\frac{D}{x^q}\right) = -0_0_x^{-(0+1})\]
\[\frac{d}{dx}\left(-\frac{E}{x^r}\right) = 0_0_x^{-(0+1})\]
Final Answer:
The overall derivative of the function is \[((A_0_x^{0-1})_((6_x^1 - 13)^3) - (A_x^0)_(p_(6_x^1 - 13)^{3-1} * 6_1_x^{1-1}))/((6_x^1 - 13)^3)^2 - 0_0_x^{-(0+1}) + 0_0*x^{-(0+1})\], rounded to 2 decimal places.