Questions: Given a=12 cm, b=19 cm, and γ=87°, find the angles of all possible triangles. Round answers to the nearest degree. c ≈ 7 cm, α ≈ 33°, β ≈ 60° c ≈ 22 cm, α ≈ 33°, β ≈ 60° c ≈ 7 cm, α ≈ 60°, β ≈ 33° c ≈ 22 cm, α ≈ 60°, β ≈ 33°

Given a=12 cm, b=19 cm, and γ=87°, find the angles of all possible triangles. Round answers to the nearest degree.
c ≈ 7 cm, α ≈ 33°, β ≈ 60°
c ≈ 22 cm, α ≈ 33°, β ≈ 60°
c ≈ 7 cm, α ≈ 60°, β ≈ 33°
c ≈ 22 cm, α ≈ 60°, β ≈ 33°
Transcript text: Given $a=12 \mathrm{~cm}, b=19 \mathrm{~cm}$, and $\gamma=87^{\circ}$, find the angles of all possible triangles. Round answers to the nearest degree. $c \approx 7 \mathrm{~cm}, \alpha \approx 33^{\circ}, \beta \approx 60^{\circ}$ $c \approx 22 \mathrm{~cm}, \alpha \approx 33^{\circ}, \beta \approx 60^{\circ}$ $c \approx 7 \mathrm{~cm}, \alpha \approx 60^{\circ}, \beta \approx 33^{\circ}$ $c \approx 22 \mathrm{~cm}, \alpha \approx 60^{\circ}, \beta \approx 33^{\circ}$ SAVE \& CONTINUE
failed

Solution

failed
failed

Solution Steps

Step 1: Given Values

We are given the following values for the triangle:

  • \( a = 12 \, \text{cm} \)
  • \( b = 19 \, \text{cm} \)
  • \( \gamma = 87^\circ \)
Step 2: Calculate Side \( c \)

Using the Law of Cosines, we can find the length of side \( c \): \[ c^2 = a^2 + b^2 - 2ab \cdot \cos(\gamma) \] Substituting the values: \[ c^2 = 12^2 + 19^2 - 2 \cdot 12 \cdot 19 \cdot \cos(87^\circ) \] Calculating this gives us two possible lengths for \( c \): \[ c_1 \approx 22 \, \text{cm} \quad \text{and} \quad c_2 \approx 23 \, \text{cm} \]

Step 3: Calculate Angles \( \alpha \) and \( \beta \)

Using the Law of Sines, we can find the angles \( \alpha \) and \( \beta \) for each case of \( c \).

For \( c_1 \): \[ \frac{a}{\sin(\alpha_1)} = \frac{c_1}{\sin(\gamma)} \] This leads to: \[ \sin(\alpha_1) = \frac{a \cdot \sin(\gamma)}{c_1} \] Calculating gives: \[ \alpha_1 \approx 33^\circ \] Then, using the fact that the sum of angles in a triangle is \( 180^\circ \): \[ \beta_1 = 180^\circ - \alpha_1 - \gamma \approx 60^\circ \]

For \( c_2 \): \[ \frac{a}{\sin(\alpha_2)} = \frac{c_2}{\sin(\gamma)} \] This leads to: \[ \sin(\alpha_2) = \frac{a \cdot \sin(\gamma)}{c_2} \] Calculating gives: \[ \alpha_2 \approx 31^\circ \] Then, using the sum of angles: \[ \beta_2 = 180^\circ - \alpha_2 - \gamma \approx 56^\circ \]

Step 4: Summary of Results

The possible triangles yield the following results:

  1. For \( c_1 \approx 22 \, \text{cm} \):

    • \( \alpha_1 \approx 33^\circ \)
    • \( \beta_1 \approx 60^\circ \)
  2. For \( c_2 \approx 23 \, \text{cm} \):

    • \( \alpha_2 \approx 31^\circ \)
    • \( \beta_2 \approx 56^\circ \)

Final Answer

The correct answer is D: \( c \approx 22 \, \text{cm}, \alpha \approx 33^\circ, \beta \approx 60^\circ \).

Was this solution helpful?
failed
Unhelpful
failed
Helpful