The ramp is inclined at 30 degrees. The unit vector along the ramp in the upward direction can be represented as:
\[ \mathbf{u} = \cos(30^\circ) \mathbf{i} + \sin(30^\circ) \mathbf{j} \]
Using the trigonometric values:
\[ \cos(30^\circ) = \frac{\sqrt{3}}{2} \]
\[ \sin(30^\circ) = \frac{1}{2} \]
Thus, the unit vector is:
\[ \mathbf{u} = \frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} \]
The force due to gravity is given by:
\[ \mathbf{F} = -700 \mathbf{j} \]
The vector projection of \(\mathbf{F}\) onto \(\mathbf{u}\) is given by:
\[ \text{proj}_{\mathbf{u}} \mathbf{F} = \left( \frac{\mathbf{F} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \right) \mathbf{u} \]
First, calculate the dot product \(\mathbf{F} \cdot \mathbf{u}\):
\[ \mathbf{F} \cdot \mathbf{u} = (-700 \mathbf{j}) \cdot \left( \frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} \right) = -700 \cdot \frac{1}{2} = -350 \]
Next, calculate the dot product \(\mathbf{u} \cdot \mathbf{u}\):
\[ \mathbf{u} \cdot \mathbf{u} = \left( \frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} \right) \cdot \left( \frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} \right) = \left( \frac{\sqrt{3}}{2} \right)^2 + \left( \frac{1}{2} \right)^2 = \frac{3}{4} + \frac{1}{4} = 1 \]
Thus, the vector projection is:
\[ \text{proj}_{\mathbf{u}} \mathbf{F} = (-350) \mathbf{u} = -350 \left( \frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} \right) = -175 \sqrt{3} \mathbf{i} - 175 \mathbf{j} \]
The magnitude of the vector projection is given by:
\[ \left| \text{proj}_{\mathbf{u}} \mathbf{F} \right| = \sqrt{(-175 \sqrt{3})^2 + (-175)^2} \]
Calculate the squares:
\[ (-175 \sqrt{3})^2 = 175^2 \cdot 3 = 91875 \]
\[ (-175)^2 = 30625 \]
Add the squares:
\[ 91875 + 30625 = 122500 \]
Take the square root:
\[ \sqrt{122500} = 350 \]
The magnitude of the vector projection is 350 pounds. This represents the component of the gravitational force acting along the direction of the ramp.
The unit vector along the ramp in the upward direction is:
\[ \mathbf{u} = \frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} \]
The vector projection of \(\mathbf{F}\) onto \(\mathbf{u}\) is:
\[ \text{proj}_{\mathbf{u}} \mathbf{F} = -175 \sqrt{3} \mathbf{i} - 175 \mathbf{j} \]
The magnitude of the vector projection is 350 pounds, representing the component of the gravitational force acting along the direction of the ramp.