a. To show that \( T \) is a linear transformation, we need to verify two properties: additivity and homogeneity. For additivity, compute \( T(\mathbf{p} + \mathbf{q}) \) and show it equals \( T(\mathbf{p}) + T(\mathbf{q}) \). For homogeneity, compute \( T(c\mathbf{p}) \) and show it equals \( cT(\mathbf{p}) \) for any scalar \( c \).
b. To find a polynomial that spans the kernel of \( T \), solve for \( \mathbf{p}(t) \) such that \( T(\mathbf{p}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \). The range of \( T \) is the set of all possible outputs, which can be described by evaluating \( T \) on a basis of \( \mathbb{P}_2 \).
To solve the given problem, we will follow the steps outlined in the question. Let's begin with the first part of the problem.
A transformation \( T: V \rightarrow W \) is linear if it satisfies the following two properties for all vectors \( \mathbf{u}, \mathbf{v} \in V \) and scalars \( c \in \mathbb{R} \):
- Additivity: \( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \)
- Homogeneity: \( T(c\mathbf{u}) = cT(\mathbf{u}) \)
Let's verify these properties for the transformation \( T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2} \) defined by \( T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} \).
Let \( \mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 \) and \( \mathbf{q}(t) = b_0 + b_1 t + b_2 t^2 \) be arbitrary polynomials in \( \mathbb{P}_{2} \).
Then, \( \mathbf{p}(t) + \mathbf{q}(t) = (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 \).
Now, compute \( T(\mathbf{p} + \mathbf{q}) \):
\[
T(\mathbf{p} + \mathbf{q}) = \begin{bmatrix} (\mathbf{p} + \mathbf{q})(0) \\ (\mathbf{p} + \mathbf{q})(1) \end{bmatrix} = \begin{bmatrix} a_0 + b_0 \\ a_0 + a_1 + a_2 + b_0 + b_1 + b_2 \end{bmatrix}
\]
Compute \( T(\mathbf{p}) + T(\mathbf{q}) \):
\[
T(\mathbf{p}) = \begin{bmatrix} a_0 \\ a_0 + a_1 + a_2 \end{bmatrix}, \quad T(\mathbf{q}) = \begin{bmatrix} b_0 \\ b_0 + b_1 + b_2 \end{bmatrix}
\]
\[
T(\mathbf{p}) + T(\mathbf{q}) = \begin{bmatrix} a_0 + b_0 \\ (a_0 + a_1 + a_2) + (b_0 + b_1 + b_2) \end{bmatrix} = \begin{bmatrix} a_0 + b_0 \\ a_0 + a_1 + a_2 + b_0 + b_1 + b_2 \end{bmatrix}
\]
Since \( T(\mathbf{p} + \mathbf{q}) = T(\mathbf{p}) + T(\mathbf{q}) \), the additivity property holds.
For a scalar \( c \) and polynomial \( \mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 \), compute \( T(c\mathbf{p}) \):
\[
c\mathbf{p}(t) = ca_0 + ca_1 t + ca_2 t^2
\]
\[
T(c\mathbf{p}) = \begin{bmatrix} (c\mathbf{p})(0) \\ (c\mathbf{p})(1) \end{bmatrix} = \begin{bmatrix} ca_0 \\ ca_0 + ca_1 + ca_2 \end{bmatrix}
\]
Compute \( cT(\mathbf{p}) \):
\[
cT(\mathbf{p}) = c \begin{bmatrix} a_0 \\ a_0 + a_1 + a_2 \end{bmatrix} = \begin{bmatrix} ca_0 \\ c(a_0 + a_1 + a_2) \end{bmatrix} = \begin{bmatrix} ca_0 \\ ca_0 + ca_1 + ca_2 \end{bmatrix}
\]
Since \( T(c\mathbf{p}) = cT(\mathbf{p}) \), the homogeneity property holds.
Thus, \( T \) is a linear transformation.
The kernel of \( T \), denoted as \( \ker(T) \), is the set of all polynomials \( \mathbf{p} \in \mathbb{P}_{2} \) such that \( T(\mathbf{p}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \).
Let \( \mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 \). Then:
\[
T(\mathbf{p}) = \begin{bmatrix} a_0 \\ a_0 + a_1 + a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
This gives the system of equations:
- \( a_0 = 0 \)
- \( a_0 + a_1 + a_2 = 0 \)
From the first equation, \( a_0 = 0 \). Substituting into the second equation gives:
\[
0 + a_1 + a_2 = 0 \quad \Rightarrow \quad a_1 = -a_2
\]
Thus, a polynomial in the kernel is of the form \( \mathbf{p}(t) = 0 + a_1 t + (-a_1) t^2 = a_1(t - t^2) \).
A polynomial that spans the kernel is \( \mathbf{p}(t) = t - t^2 \).
The range of \( T \), denoted as \( \text{Range}(T) \), is the set of all possible outputs of \( T \).
For \( \mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 \), we have:
\[
T(\mathbf{p}) = \begin{bmatrix} a_0 \\ a_0 + a_1 + a_2 \end{bmatrix}
\]
The range of \( T \) is all vectors of the form \( \begin{bmatrix} a_0 \\ a_0 + a_1 + a_2 \end{bmatrix} \), which is a subspace of \( \mathbb{R}^2 \).
To find a basis for the range, consider the vectors:
- \( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) from \( \mathbf{p}(t) = 1 \)
- \( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) from \( \mathbf{p}(t) = t + t^2 \)
These vectors are linearly independent and span the range of \( T \).
- \( T \) is a linear transformation.
- A polynomial that spans the kernel of \( T \) is \( \mathbf{p}(t) = t - t^2 \).
- The range of \( T \) is spanned by the vectors \( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) and \( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \).
\[
\boxed{\text{a. } T \text{ is a linear transformation.}}
\]
\[
\boxed{\text{b. Kernel: } \mathbf{p}(t) = t - t^2, \text{ Range: spanned by } \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}}
\]