To solve this linear programming problem, we need to find the values of \(x\) and \(y\) that minimize the objective function \(z = 3x + 5y\) while satisfying all the given constraints. We can use the scipy.optimize.linprog
function from the SciPy library in Python to achieve this.
We are given the following linear programming problem:
Objective function:
\[ z = 3x + 5y \]
Subject to the constraints:
\[
\begin{align*}
- & \quad 2y + 7x \geq 20 \\
- & \quad 7y + 2x \geq 20 \\
- & \quad y + x \geq 5 \\
- & \quad x \geq 0 \\
- & \quad y \geq 0
\end{align*}
\]
To find the feasible region, we convert the inequalities to equalities and find the intersection points:
- \( 2y + 7x = 20 \)
- \( 7y + 2x = 20 \)
- \( y + x = 5 \)
Solve the system of equations to find the intersection points.
\[
\begin{align_}
2y + 7x &= 20 \quad \text{(1)} \\
7y + 2x &= 20 \quad \text{(2)}
\end{align_}
\]
Multiply (1) by 7 and (2) by 2 to eliminate \( y \):
\[
\begin{align_}
14y + 49x &= 140 \quad \text{(3)} \\
14y + 4x &= 40 \quad \text{(4)}
\end{align_}
\]
Subtract (4) from (3):
\[
45x = 100 \implies x = \frac{100}{45} = \frac{20}{9}
\]
Substitute \( x = \frac{20}{9} \) into (1):
\[
2y + 7 \left( \frac{20}{9} \right) = 20 \implies 2y + \frac{140}{9} = 20 \implies 2y = 20 - \frac{140}{9} = \frac{180}{9} - \frac{140}{9} = \frac{40}{9} \implies y = \frac{20}{9}
\]
So, the intersection point is:
\[
\left( \frac{20}{9}, \frac{20}{9} \right)
\]
\[
\begin{align_}
2y + 7x &= 20 \quad \text{(1)} \\
y + x &= 5 \quad \text{(5)}
\end{align_}
\]
Substitute \( y = 5 - x \) into (1):
\[
2(5 - x) + 7x = 20 \implies 10 - 2x + 7x = 20 \implies 5x = 10 \implies x = 2
\]
Substitute \( x = 2 \) into (5):
\[
y = 5 - 2 = 3
\]
So, the intersection point is:
\[
(2, 3)
\]
\[
\begin{align_}
7y + 2x &= 20 \quad \text{(2)} \\
y + x &= 5 \quad \text{(5)}
\end{align_}
\]
Substitute \( y = 5 - x \) into (2):
\[
7(5 - x) + 2x = 20 \implies 35 - 7x + 2x = 20 \implies -5x = -15 \implies x = 3
\]
Substitute \( x = 3 \) into (5):
\[
y = 5 - 3 = 2
\]
So, the intersection point is:
\[
(3, 2)
\]
Evaluate \( z = 3x + 5y \) at each intersection point:
At \( \left( \frac{20}{9}, \frac{20}{9} \right) \):
\[
z = 3 \left( \frac{20}{9} \right) + 5 \left( \frac{20}{9} \right) = \frac{60}{9} + \frac{100}{9} = \frac{160}{9} \approx 17.7778
\]
At \( (2, 3) \):
\[
z = 3(2) + 5(3) = 6 + 15 = 21
\]
At \( (3, 2) \):
\[
z = 3(3) + 5(2) = 9 + 10 = 19
\]
The minimum value of \( z \) is at the point \( \left( \frac{20}{9}, \frac{20}{9} \right) \).
\[
\boxed{z = \frac{160}{9} \approx 17.7778}
\]
\[
\boxed{x = \frac{20}{9}}
\]
\[
\boxed{y = \frac{20}{9}}
\]