Questions: Uma partícula de massa de repouso m0 se move ao longo do eixo x com velocidade u e colide com outra partícula de massa de repouso m0/3 que se move em direção a primeira com velocidade -u. Após a colisão, as partículas se unem. Determine a massa de repouso M0 do sistema após a colisão.

Uma partícula de massa de repouso m0 se move ao longo do eixo x com velocidade u e colide com outra partícula de massa de repouso m0/3 que se move em direção a primeira com velocidade -u. Após a colisão, as partículas se unem. Determine a massa de repouso M0 do sistema após a colisão.
Transcript text: 03. Uma partícula de massa de repouso $m_{0}$ se move ao longo do eixo $x$ com velocidade u e colide com outra partícula de massa de repouso $\frac{m_{0}}{3}$ que se move em direção a primeira com velocidade -u. Após a colisão, as partículas se unem. Determine a massa de repouso $\mathrm{M}_{0}$ do sistema após a colisão.
failed

Solution

failed
failed

Solution Steps

Step 1: Define the Problem and Given Data

We are given two particles:

  • Particle 1: Rest mass \( m_0 \) and velocity \( u \)
  • Particle 2: Rest mass \( \frac{m_0}{3} \) and velocity \( -u \)

After the collision, the particles stick together, forming a single system. We need to determine the rest mass \( M_0 \) of this combined system.

Step 2: Use Conservation of Momentum

In special relativity, the total momentum before and after the collision must be conserved. The relativistic momentum \( p \) is given by: \[ p = \gamma m v \] where \( \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \).

For Particle 1: \[ p_1 = \gamma_1 m_0 u \] where \( \gamma_1 = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \).

For Particle 2: \[ p_2 = \gamma_2 \left(\frac{m_0}{3}\right) (-u) \] where \( \gamma_2 = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \).

Since \( \gamma_1 = \gamma_2 \) (both particles have the same speed \( u \)): \[ p_2 = -\gamma_1 \left(\frac{m_0}{3}\right) u \]

Step 3: Calculate Total Momentum Before Collision

The total momentum before the collision is: \[ p_{\text{total}} = p_1 + p_2 = \gamma_1 m_0 u - \gamma_1 \left(\frac{m_0}{3}\right) u \] \[ p_{\text{total}} = \gamma_1 m_0 u \left(1 - \frac{1}{3}\right) \] \[ p_{\text{total}} = \gamma_1 m_0 u \left(\frac{2}{3}\right) \]

Step 4: Use Conservation of Energy

The total energy before and after the collision must also be conserved. The relativistic energy \( E \) is given by: \[ E = \gamma m c^2 \]

For Particle 1: \[ E_1 = \gamma_1 m_0 c^2 \]

For Particle 2: \[ E_2 = \gamma_1 \left(\frac{m_0}{3}\right) c^2 \]

The total energy before the collision is: \[ E_{\text{total}} = E_1 + E_2 = \gamma_1 m_0 c^2 + \gamma_1 \left(\frac{m_0}{3}\right) c^2 \] \[ E_{\text{total}} = \gamma_1 m_0 c^2 \left(1 + \frac{1}{3}\right) \] \[ E_{\text{total}} = \gamma_1 m_0 c^2 \left(\frac{4}{3}\right) \]

Step 5: Determine the Rest Mass of the Combined System

After the collision, the combined system has rest mass \( M_0 \) and is at rest (since the momenta cancel out). The total energy of the system is: \[ E_{\text{total}} = M_0 c^2 \]

Equating the total energy before and after the collision: \[ \gamma_1 m_0 c^2 \left(\frac{4}{3}\right) = M_0 c^2 \] \[ M_0 = \gamma_1 m_0 \left(\frac{4}{3}\right) \]

Since \( \gamma_1 = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \), we have: \[ M_0 = \frac{m_0 \left(\frac{4}{3}\right)}{\sqrt{1 - \frac{u^2}{c^2}}} \]

Final Answer

The rest mass \( M_0 \) of the system after the collision is: \[ \boxed{M_0 = \frac{4 m_0}{3 \sqrt{1 - \frac{u^2}{c^2}}}} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful