We start by evaluating the inner expression:
\[
2 - 3 = -1
\]
Step 2: Raise to the Power of \( \frac{3}{2} \)
Next, we raise the result from Step 1 to the power of \( \frac{3}{2} \):
\[
(-1)^{\frac{3}{2}} = -1 \cdot i = -1 + 0i
\]
This results in a complex number:
\[
(-1.8369701987210297 \times 10^{-16} - 1j)
\]
Step 3: Multiply by \( \frac{2}{3} \)
We then multiply the result from Step 2 by \( \frac{2}{3} \):
\[
\frac{2}{3} \cdot (-1 + 0i) = -\frac{2}{3} + 0i
\]
This gives us:
\[
(-1.224646799147353 \times 10^{-16} - 0.6666666666666666j)
\]
Step 4: Evaluate the Expression \( 2(2) - (2)^2 \)
Now we evaluate the expression \( 2(2) - (2)^2 \):
\[
2 \cdot 2 - 2^2 = 4 - 4 = 0
\]
Step 5: Subtract the Result from Step 4 from Step 3
We subtract the result from Step 4 from the result of Step 3:
\[
(-1.224646799147353 \times 10^{-16} - 0.6666666666666666j) - 0 = (-1.224646799147353 \times 10^{-16} - 0.6666666666666666j)
\]
Final Answer
The final result of the expression is:
\[
\boxed{(-1.224646799147353 \times 10^{-16} - 0.6667j)}
\]