Transcript text: Given: $\overline{Q P} \| \overline{T S}$
Prove: $\frac{Q T}{T R}=\frac{P S}{S R}$
Statement
Reason
$1 \overline{Q P} \| \overline{T S}$
$2 \quad \angle R Q P \cong \angle R$
$3 \angle R \cong \angle R$
$4 \Delta P Q R \sim \triangle S T R$
$5 \frac{Q R}{T R}=\frac{\square}{S R}$
Given
$2 \angle R Q P \cong \angle R T S$
$3 \angle R \cong \angle R$
$4 . \triangle P Q R \sim \triangle S T R$
$5 \frac{Q R}{T R}=\frac{\square}{S R}$
$6 Q R=Q T+T R$
$7 P R=P S+S R$
$8 \frac{Q T+T R}{T R}=\frac{\square+\square}{S R}$
$9 \frac{Q T}{T R}+\frac{T R}{T R}=\frac{P S}{S R}+\frac{S R}{S R}$
$10 \frac{Q T}{T R}+1=\frac{P S}{S R}+1$
$11 \frac{Q T}{T R}=\frac{\square}{S R}$
Solution
Solution Steps
Step 1: Corresponding Angles Postulate
Since $\overline{QP} \parallel \overline{TS}$, we can say that $\angle RQP \cong \angle RTS$ due to the Corresponding Angles Postulate.
Step 2: Reflexive Property
$\angle R \cong \angle R$ due to the Reflexive Property of Congruence.
Step 3: Angle-Angle Similarity
Since $\angle RQP \cong \angle RTS$ and $\angle R \cong \angle R$, we can conclude that $\triangle PQR \sim \triangle STR$ by the Angle-Angle (AA) Similarity Postulate.
Step 4: Corresponding Sides of Similar Triangles
Because $\triangle PQR \sim \triangle STR$, the ratio of corresponding sides is equal. Therefore, $\frac{QR}{TR} = \frac{PR}{SR}$.
Step 5: Segment Addition Postulate
We can express $QR$ as $QT + TR$ and $PR$ as $PS + SR$ using the Segment Addition Postulate.
Step 6: Substitution
Substituting the expressions from Step 5 into the proportion from Step 4 gives us $\frac{QT + TR}{TR} = \frac{PS + SR}{SR}$.
Step 7: Fraction Algebra
We can separate the fractions on both sides of the equation: $\frac{QT}{TR} + \frac{TR}{TR} = \frac{PS}{SR} + \frac{SR}{SR}$.
Step 8: Simplification
Simplifying the fractions with common numerators and denominators, we get $\frac{QT}{TR} + 1 = \frac{PS}{SR} + 1$.
Step 9: Subtraction Property of Equality
Subtracting 1 from both sides of the equation gives the desired result: $\frac{QT}{TR} = \frac{PS}{SR}$.