The problem states that neon is compressed isothermally from an initial pressure \( P_1 = 100 \, \text{kPa} \) and temperature \( T = 16.00^\circ \text{C} \) to a final pressure \( P_2 = 500 \, \text{kPa} \). First, convert the temperature to Kelvin:
\[
T = 16.00 + 273.15 = 289.15 \, \text{K}
\]
Using the ideal gas law, the specific volume \( v_1 \) at the initial state can be calculated as:
\[
v_1 = \frac{R \cdot T}{P_1}
\]
Substitute the given values:
\[
v_1 = \frac{0.4119 \, \text{kJ/kg} \cdot \text{K} \times 289.15 \, \text{K}}{100 \, \text{kPa}} = \frac{0.4119 \times 289.15}{100} \, \text{m}^3/\text{kg}
\]
\[
v_1 = 1.1911 \, \text{m}^3/\text{kg}
\]
Since the process is isothermal, the specific volume \( v_2 \) at the final state can be calculated using the relation:
\[
v_2 = \frac{R \cdot T}{P_2}
\]
Substitute the given values:
\[
v_2 = \frac{0.4119 \, \text{kJ/kg} \cdot \text{K} \times 289.15 \, \text{K}}{500 \, \text{kPa}} = \frac{0.4119 \times 289.15}{500} \, \text{m}^3/\text{kg}
\]
\[
v_2 = 0.2382 \, \text{m}^3/\text{kg}
\]
The change in specific volume \( \Delta v \) is:
\[
\Delta v = v_2 - v_1 = 0.2382 - 1.1911 = -0.9529 \, \text{m}^3/\text{kg}
\]
For an isothermal process, the change in specific enthalpy \( \Delta h \) for an ideal gas is zero because enthalpy is a function of temperature only, and the temperature remains constant.
\[
\Delta h = 0 \, \text{kJ/kg}
\]
The change in the specific volume is \(\boxed{-0.9529 \, \text{m}^3/\text{kg}}\).
The change in the specific enthalpy is \(\boxed{0 \, \text{kJ/kg}}\).