The midpoints x i x_i x i for each class interval are calculated as follows:
x 1 = 0 + 19 2 = 9.5 , x 2 = 20 + 39 2 = 29.5 , x 3 = 40 + 59 2 = 49.5 ,
x_1 = \frac{0 + 19}{2} = 9.5, \quad x_2 = \frac{20 + 39}{2} = 29.5, \quad x_3 = \frac{40 + 59}{2} = 49.5,
x 1 = 2 0 + 19 = 9.5 , x 2 = 2 20 + 39 = 29.5 , x 3 = 2 40 + 59 = 49.5 ,
x 4 = 60 + 79 2 = 69.5 , x 5 = 80 + 99 2 = 89.5 , x 6 = 100 + 119 2 = 109.5
x_4 = \frac{60 + 79}{2} = 69.5, \quad x_5 = \frac{80 + 99}{2} = 89.5, \quad x_6 = \frac{100 + 119}{2} = 109.5
x 4 = 2 60 + 79 = 69.5 , x 5 = 2 80 + 99 = 89.5 , x 6 = 2 100 + 119 = 109.5
Thus, the midpoints are:
Midpoints: [ 9.5 , 29.5 , 49.5 , 69.5 , 89.5 , 109.5 ]
\text{Midpoints: } [9.5, 29.5, 49.5, 69.5, 89.5, 109.5]
Midpoints: [ 9.5 , 29.5 , 49.5 , 69.5 , 89.5 , 109.5 ]
The mean x ˉ \bar{x} x ˉ of the grouped data is calculated using the formula:
x ˉ = ∑ ( f i ⋅ x i ) N
\bar{x} = \frac{\sum (f_i \cdot x_i)}{N}
x ˉ = N ∑ ( f i ⋅ x i )
where f i f_i f i is the frequency and N N N is the total frequency. The total frequency N N N is:
N = 4 + 3 + 6 + 3 + 5 + 9 = 30
N = 4 + 3 + 6 + 3 + 5 + 9 = 30
N = 4 + 3 + 6 + 3 + 5 + 9 = 30
Calculating the numerator:
∑ ( f i ⋅ x i ) = ( 4 ⋅ 9.5 ) + ( 3 ⋅ 29.5 ) + ( 6 ⋅ 49.5 ) + ( 3 ⋅ 69.5 ) + ( 5 ⋅ 89.5 ) + ( 9 ⋅ 109.5 ) = 38 + 88.5 + 297 + 208.5 + 447.5 + 985.5 = 2065
\sum (f_i \cdot x_i) = (4 \cdot 9.5) + (3 \cdot 29.5) + (6 \cdot 49.5) + (3 \cdot 69.5) + (5 \cdot 89.5) + (9 \cdot 109.5) = 38 + 88.5 + 297 + 208.5 + 447.5 + 985.5 = 2065
∑ ( f i ⋅ x i ) = ( 4 ⋅ 9.5 ) + ( 3 ⋅ 29.5 ) + ( 6 ⋅ 49.5 ) + ( 3 ⋅ 69.5 ) + ( 5 ⋅ 89.5 ) + ( 9 ⋅ 109.5 ) = 38 + 88.5 + 297 + 208.5 + 447.5 + 985.5 = 2065
Thus, the mean is:
x ˉ = 2065 30 ≈ 68.8333
\bar{x} = \frac{2065}{30} \approx 68.8333
x ˉ = 30 2065 ≈ 68.8333
The variance s 2 s^2 s 2 for grouped data is calculated using the formula:
s 2 = ∑ f i ( x i − x ˉ ) 2 N
s^2 = \frac{\sum f_i (x_i - \bar{x})^2}{N}
s 2 = N ∑ f i ( x i − x ˉ ) 2
Calculating ( x i − x ˉ ) 2 (x_i - \bar{x})^2 ( x i − x ˉ ) 2 for each midpoint:
( x 1 − x ˉ ) 2 = ( 9.5 − 68.8333 ) 2 ≈ 3480.1111
(x_1 - \bar{x})^2 = (9.5 - 68.8333)^2 \approx 3480.1111
( x 1 − x ˉ ) 2 = ( 9.5 − 68.8333 ) 2 ≈ 3480.1111
( x 2 − x ˉ ) 2 = ( 29.5 − 68.8333 ) 2 ≈ 1537.1111
(x_2 - \bar{x})^2 = (29.5 - 68.8333)^2 \approx 1537.1111
( x 2 − x ˉ ) 2 = ( 29.5 − 68.8333 ) 2 ≈ 1537.1111
( x 3 − x ˉ ) 2 = ( 49.5 − 68.8333 ) 2 ≈ 372.1111
(x_3 - \bar{x})^2 = (49.5 - 68.8333)^2 \approx 372.1111
( x 3 − x ˉ ) 2 = ( 49.5 − 68.8333 ) 2 ≈ 372.1111
( x 4 − x ˉ ) 2 = ( 69.5 − 68.8333 ) 2 ≈ 0.4444
(x_4 - \bar{x})^2 = (69.5 - 68.8333)^2 \approx 0.4444
( x 4 − x ˉ ) 2 = ( 69.5 − 68.8333 ) 2 ≈ 0.4444
( x 5 − x ˉ ) 2 = ( 89.5 − 68.8333 ) 2 ≈ 426.1111
(x_5 - \bar{x})^2 = (89.5 - 68.8333)^2 \approx 426.1111
( x 5 − x ˉ ) 2 = ( 89.5 − 68.8333 ) 2 ≈ 426.1111
( x 6 − x ˉ ) 2 = ( 109.5 − 68.8333 ) 2 ≈ 1640.1111
(x_6 - \bar{x})^2 = (109.5 - 68.8333)^2 \approx 1640.1111
( x 6 − x ˉ ) 2 = ( 109.5 − 68.8333 ) 2 ≈ 1640.1111
Now, calculating the variance:
∑ f i ( x i − x ˉ ) 2 = ( 4 ⋅ 3480.1111 ) + ( 3 ⋅ 1537.1111 ) + ( 6 ⋅ 372.1111 ) + ( 3 ⋅ 0.4444 ) + ( 5 ⋅ 426.1111 ) + ( 9 ⋅ 1640.1111 )
\sum f_i (x_i - \bar{x})^2 = (4 \cdot 3480.1111) + (3 \cdot 1537.1111) + (6 \cdot 372.1111) + (3 \cdot 0.4444) + (5 \cdot 426.1111) + (9 \cdot 1640.1111)
∑ f i ( x i − x ˉ ) 2 = ( 4 ⋅ 3480.1111 ) + ( 3 ⋅ 1537.1111 ) + ( 6 ⋅ 372.1111 ) + ( 3 ⋅ 0.4444 ) + ( 5 ⋅ 426.1111 ) + ( 9 ⋅ 1640.1111 )
= 13920.4444 + 4611.3333 + 2232.6667 + 1.3332 + 2130.5555 + 14760.9999 ≈ 33966.3333
= 13920.4444 + 4611.3333 + 2232.6667 + 1.3332 + 2130.5555 + 14760.9999 \approx 33966.3333
= 13920.4444 + 4611.3333 + 2232.6667 + 1.3332 + 2130.5555 + 14760.9999 ≈ 33966.3333
Thus, the variance is:
s 2 = 33966.3333 30 ≈ 1128.8778
s^2 = \frac{33966.3333}{30} \approx 1128.8778
s 2 = 30 33966.3333 ≈ 1128.8778
The standard deviation s s s is the square root of the variance:
s = 1128.8778 ≈ 33.6
s = \sqrt{1128.8778} \approx 33.6
s = 1128.8778 ≈ 33.6
The standard deviation for the grouped data is:
s = 35.6
\boxed{s = 35.6}
s = 35.6