Questions: Find the standard deviation for the grouped data. College Units Frequency 0-19 4 20-39 3 40-59 6 60-79 3 80-99 5 100-119 9 s= (Do not round until the final answer. Then round to the nearest tenth as needed.)

Find the standard deviation for the grouped data.
College Units  Frequency
0-19  4
20-39  3
40-59  6
60-79  3
80-99  5
100-119  9

s=

(Do not round until the final answer. Then round to the nearest tenth as needed.)
Transcript text: Find the standard deviation for the grouped data. \begin{tabular}{|c|c|} \hline College Units & Frequency \\ \hline $0-19$ & 4 \\ $20-39$ & 3 \\ $40-59$ & 6 \\ $60-79$ & 3 \\ $80-99$ & 5 \\ $100-119$ & 9 \\ \hline \end{tabular} \[ s= \] $\square$ (Do not round until the final answer. Then round to the nearest tenth as needed.)
failed

Solution

failed
failed

Solution Steps

Step 1: Calculate Midpoints

The midpoints \( x_i \) for each class interval are calculated as follows:

\[ x_1 = \frac{0 + 19}{2} = 9.5, \quad x_2 = \frac{20 + 39}{2} = 29.5, \quad x_3 = \frac{40 + 59}{2} = 49.5, \] \[ x_4 = \frac{60 + 79}{2} = 69.5, \quad x_5 = \frac{80 + 99}{2} = 89.5, \quad x_6 = \frac{100 + 119}{2} = 109.5 \]

Thus, the midpoints are:

\[ \text{Midpoints: } [9.5, 29.5, 49.5, 69.5, 89.5, 109.5] \]

Step 2: Calculate Mean

The mean \( \bar{x} \) of the grouped data is calculated using the formula:

\[ \bar{x} = \frac{\sum (f_i \cdot x_i)}{N} \]

where \( f_i \) is the frequency and \( N \) is the total frequency. The total frequency \( N \) is:

\[ N = 4 + 3 + 6 + 3 + 5 + 9 = 30 \]

Calculating the numerator:

\[ \sum (f_i \cdot x_i) = (4 \cdot 9.5) + (3 \cdot 29.5) + (6 \cdot 49.5) + (3 \cdot 69.5) + (5 \cdot 89.5) + (9 \cdot 109.5) = 38 + 88.5 + 297 + 208.5 + 447.5 + 985.5 = 2065 \]

Thus, the mean is:

\[ \bar{x} = \frac{2065}{30} \approx 68.8333 \]

Step 3: Calculate Variance

The variance \( s^2 \) for grouped data is calculated using the formula:

\[ s^2 = \frac{\sum f_i (x_i - \bar{x})^2}{N} \]

Calculating \( (x_i - \bar{x})^2 \) for each midpoint:

\[ (x_1 - \bar{x})^2 = (9.5 - 68.8333)^2 \approx 3480.1111 \] \[ (x_2 - \bar{x})^2 = (29.5 - 68.8333)^2 \approx 1537.1111 \] \[ (x_3 - \bar{x})^2 = (49.5 - 68.8333)^2 \approx 372.1111 \] \[ (x_4 - \bar{x})^2 = (69.5 - 68.8333)^2 \approx 0.4444 \] \[ (x_5 - \bar{x})^2 = (89.5 - 68.8333)^2 \approx 426.1111 \] \[ (x_6 - \bar{x})^2 = (109.5 - 68.8333)^2 \approx 1640.1111 \]

Now, calculating the variance:

\[ \sum f_i (x_i - \bar{x})^2 = (4 \cdot 3480.1111) + (3 \cdot 1537.1111) + (6 \cdot 372.1111) + (3 \cdot 0.4444) + (5 \cdot 426.1111) + (9 \cdot 1640.1111) \] \[ = 13920.4444 + 4611.3333 + 2232.6667 + 1.3332 + 2130.5555 + 14760.9999 \approx 33966.3333 \]

Thus, the variance is:

\[ s^2 = \frac{33966.3333}{30} \approx 1128.8778 \]

Step 4: Calculate Standard Deviation

The standard deviation \( s \) is the square root of the variance:

\[ s = \sqrt{1128.8778} \approx 33.6 \]

Final Answer

The standard deviation for the grouped data is:

\[ \boxed{s = 35.6} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful