Questions: Consider the function f(x)=sin x log x^3. It is true that
Select one:
lim x -> 0+ f(x) does not exist
lim x -> 0+ f(x)=0
lim x -> 0+ f(x)=-∞
lim x -> 0+ f(x)=+∞
lim x -> 0+ f(x)=1
Transcript text: Consider the function $f(x)=\sin x \log x^{3}$. It is true that
Select one:
$\lim _{x \rightarrow 0^{+}} f(x)$ does not exist
$\lim _{x \rightarrow 0^{+}} f(x)=0$
$\lim _{x \rightarrow 0^{+}} f(x)=-\infty$
$\lim _{x \rightarrow 0^{+}} f(x)=+\infty$
$\lim _{x \rightarrow 0^{+}} f(x)=1$
Solution
Solution Steps
Step 1: Define the Function
We start with the function \( f(x) = \sin x \log x^3 \). We need to evaluate the limit of this function as \( x \) approaches \( 0^+ \).
Step 2: Analyze the Components
As \( x \) approaches \( 0^+ \):
\( \sin x \) approaches \( 0 \).
\( \log x^3 = 3 \log x \) approaches \(-\infty\).
Step 3: Identify the Indeterminate Form
The limit \( \lim_{x \to 0^+} f(x) \) results in the form \( 0 \cdot (-\infty) \), which is indeterminate. We need to resolve this indeterminate form.
Step 4: Rewrite the Function
We can rewrite the function as:
\[
f(x) = \sin x \cdot 3 \log x = \frac{3 \log x}{\frac{1}{\sin x}}
\]
This transformation allows us to analyze the limit as a fraction.
Step 5: Apply L'Hôpital's Rule
Since we have the form \( \frac{-\infty}{\infty} \), we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator:
The derivative of the numerator \( 3 \log x \) is \( \frac{3}{x} \).
The derivative of the denominator \( \frac{1}{\sin x} \) is \( -\frac{\cos x}{\sin^2 x} \).
Step 6: Evaluate the Limit
Now we evaluate the limit:
\[
\lim_{x \to 0^+} \frac{3 \log x}{\frac{1}{\sin x}} = \lim_{x \to 0^+} \frac{3/x}{-\cos x/\sin^2 x}
\]
This simplifies to:
\[
\lim_{x \to 0^+} -3 \frac{\sin^2 x}{x \cos x}
\]