The equilibrium constant \( K_P \) for the reaction is given by:
\[
K_P = \frac{(P_{\mathrm{NH}_3})^2}{(P_{\mathrm{N}_2})(P_{\mathrm{H}_2})^3}
\]
The reaction quotient \( Q_P \) is calculated using the initial pressures:
\[
Q_P = \frac{(P_{\mathrm{NH}_3})^2}{(P_{\mathrm{N}_2})(P_{\mathrm{H}_2})^3}
\]
Substitute the given initial pressures:
\[
Q_P = \frac{(4.4 \times 10^{-3})^2}{(0.86)(0.40)^3}
\]
Calculate the numerator and the denominator separately:
\[
\text{Numerator} = (4.4 \times 10^{-3})^2 = 1.936 \times 10^{-5}
\]
\[
\text{Denominator} = (0.86)(0.40)^3 = (0.86)(0.064) = 0.05504
\]
Now, calculate \( Q_P \):
\[
Q_P = \frac{1.936 \times 10^{-5}}{0.05504} \approx 3.517 \times 10^{-4}
\]
Given \( K_P = 4.3 \times 10^{-4} \) and \( Q_P \approx 3.517 \times 10^{-4} \):
Since \( Q_P < K_P \), the reaction will proceed in the forward direction to reach equilibrium.
The change in Gibbs free energy \(\Delta G\) is given by:
\[
\Delta G = \Delta G^\circ + RT \ln Q_P
\]
At equilibrium, \(\Delta G^\circ = -RT \ln K_P\). Therefore,
\[
\Delta G = -RT \ln K_P + RT \ln Q_P = RT \ln \left( \frac{Q_P}{K_P} \right)
\]
Substitute the values (\(R = 0.0821 \, \text{L·atm·K}^{-1}\text{·mol}^{-1}\), \(T = 375 + 273 = 648 \, \text{K}\)):
\[
\Delta G = (0.0821)(648) \ln \left( \frac{3.517 \times 10^{-4}}{4.3 \times 10^{-4}} \right)
\]
Calculate the ratio inside the logarithm:
\[
\frac{3.517 \times 10^{-4}}{4.3 \times 10^{-4}} \approx 0.817
\]
Now, calculate the natural logarithm:
\[
\ln(0.817) \approx -0.2027
\]
Finally, calculate \(\Delta G\):
\[
\Delta G = (0.0821)(648)(-0.2027) \approx -10.77 \, \text{J/mol}
\]
\[
\boxed{\Delta G \approx -10.77 \, \text{J/mol}}
\]
The reaction will proceed in the forward direction to reach equilibrium.