To find the distance between the two airplanes, we first need to convert their velocities into vector components. The velocity of each airplane can be broken down into horizontal (x-axis) and vertical (y-axis) components using trigonometry.
For the first airplane:
- Velocity: \(740 \, \text{m/h}\)
- Heading: \(39.3^\circ\)
The components are:
\[
v_{1x} = 740 \cos(39.3^\circ)
\]
\[
v_{1y} = 740 \sin(39.3^\circ)
\]
For the second airplane:
- Velocity: \(620 \, \text{m/h}\)
- Heading: \(109^\circ\)
The components are:
\[
v_{2x} = 620 \cos(109^\circ)
\]
\[
v_{2y} = 620 \sin(109^\circ)
\]
Next, we calculate the position of each airplane after 2.1 hours using the velocity components.
For the first airplane:
\[
x_1 = v_{1x} \times 2.1
\]
\[
y_1 = v_{1y} \times 2.1
\]
For the second airplane:
\[
x_2 = v_{2x} \times 2.1
\]
\[
y_2 = v_{2y} \times 2.1
\]
The distance between the two airplanes can be found using the distance formula:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
First, calculate the components:
For the first airplane:
\[
v_{1x} = 740 \cos(39.3^\circ) \approx 573.6763 \, \text{m/h}
\]
\[
v_{1y} = 740 \sin(39.3^\circ) \approx 468.0713 \, \text{m/h}
\]
For the second airplane:
\[
v_{2x} = 620 \cos(109^\circ) \approx -204.9610 \, \text{m/h}
\]
\[
v_{2y} = 620 \sin(109^\circ) \approx 585.1945 \, \text{m/h}
\]
Now, calculate the positions after 2.1 hours:
For the first airplane:
\[
x_1 = 573.6763 \times 2.1 \approx 1204.7202 \, \text{m}
\]
\[
y_1 = 468.0713 \times 2.1 \approx 982.9497 \, \text{m}
\]
For the second airplane:
\[
x_2 = -204.9610 \times 2.1 \approx -430.4181 \, \text{m}
\]
\[
y_2 = 585.1945 \times 2.1 \approx 1228.9085 \, \text{m}
\]
Finally, calculate the distance:
\[
d = \sqrt{(-430.4181 - 1204.7202)^2 + (1228.9085 - 982.9497)^2}
\]
\[
d = \sqrt{(-1635.1383)^2 + (245.9588)^2}
\]
\[
d = \sqrt{2674970.5 + 60405.5}
\]
\[
d = \sqrt{2735376.0} \approx 1653.8945 \, \text{m}
\]
The distance between the two airplanes after 2.1 hours is \(\boxed{1653.8945 \, \text{m}}\).